1,573 research outputs found

    Reading First Impact Study: Interim Report

    Get PDF
    This report, written by Abt Associates and MDRC and published by the U.S. Department of Education's Institute of Education Sciences, finds that Reading First increased the amount of time that teachers spent on the five essential components of reading instruction, as defined by the National Reading Panel. While Reading First did not improve students' reading comprehension on average, there are some indications that some sites had impacts on both instruction and reading comprehension. An overview puts these interim findings in context

    Correlation of tellurium inclusions and carrier lifetime in detector grade cadmium zinc telluride

    Get PDF
    Carrier lifetimes and telluriuminclusion densities in detector grade cadmiumzinc telluride crystals grown by the high pressure Bridgman method were optically measured using pulsed laser microwavecavity perturbation and infrared microscopy. Excess carriers were produced in the material using a pulsed laser with a wavelength of 1064 nm and pulse width of 7 ns, and the electronic decay was measured at room temperature. Spatial mapping of lifetimes and defect densities in cadmiumzinc telluride was performed to determine the relationship between telluriumdefect density and trapping. A strong correlation was found between the volume fraction of telluriuminclusions and the carrier trapping time

    Spin relaxation in a germanium nanowire

    Get PDF
    We report experimental study of spin transport in nanowirespin valve structures consisting of three layers—cobalt, germanium, and nickel. The spin diffusion length in the Ge is estimated to be about 400nm at 1.9K and the corresponding spin relaxation time is about 4ns. At 100K, the spin diffusion length drops to 180nm and the relaxation time is about 0.81ns. These short relaxation times, which depend weakly on temperature, are caused by strong surface roughness scattering that causes rapid spin relaxation via the Elliott-Yafet mode [Elliott, Phys. Rev.96, 266 (1954)]

    Thermal-structural design study of an airframe-integrated Scramjet

    Get PDF
    The development and evaluation of a design concept for the cooled structures assembly for the Scramjet engine is discussed. Development concepts for engine subsystems and design concepts for the aircraft/engine interface are included. A thermal protection system was defined which makes it possible to attain a life of 100 hr and 1000 cycles, the specified goal. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six module engine, the mass per unit capture area is 1256 kg/sq m. The total mass of a six module engine assembly including the fuel system is 1502 kg

    Controlled lasing from active optomechanical resonators

    Get PDF
    Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the sub-terahertz (10E10-10E11 Hz) range with quality factors exceeding 1000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route toward manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby three resonant excitations -photons, phonons, and electrons- can interact strongly with each other providing control of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings prospective applications such as THz laser control and stimulated phonon emission may emerge

    The gustin (CA6) gene polymorphism, rs2274333 (A/G), as a mechanistic link between PROP tasting and fungiform taste papilla density and maintenance

    Get PDF
    Taste sensitivity to PROP varies greatly among individuals and is associated with polymorphisms in the bitter receptor gene TAS2R38, and with differences in fungiform papilla density on the anterior tongue surface. Recently we showed that the PROP non-taster phenotype is strongly associated with the G variant of polymorphism rs2274333 (A/G) of the gene that controls the salivary trophic factor, gustin. The aims of this study were 1) to investigate the role of gustin gene polymorphism rs2274333 (A/G), in PROP sensitivity and fungiform papilla density and morphology, and 2) to investigate the effect of this gustin gene polymorphism on cell proliferation and metabolic activity. Sixty-four subjects were genotyped for both genes by PCR techniques, their PROP sensitivity was assessed by scaling and threshold methods, and their fungiform papilla density, diameter and morphology were determined. In vitro experiments examined cell proliferation and metabolic activity, following treatment with saliva of individuals with and without the gustin gene mutation, and with isolated protein, in the two iso-forms. Gustin and TAS2R38 genotypes were associated with PROP threshold (p=0.0001 and p=0.0042), but bitterness intensity was mostly determined by TAS2R38 genotypes (p<0.000001). Fungiform papillae densities were associated with both genotypes (p<0.014) (with a stronger effect for gustin; p=0.0006), but papilla morphology was a function of gustin alone (p<0.0012). Treatment of isolated cells with saliva from individuals with the AA form of gustin or direct application of the active iso-form of gustin protein increased cell proliferation and metabolic activity (p<0.0135). These novel findings suggest that the rs2274333 polymorphism of the gustin gene affects PROP sensitivity by acting on fungiform papilla development and maintenance, and could provide the first mechanistic explanation for why PROP super-tasters are more responsive to a broad range of oral stimul

    Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue shift of the fluorescence peak

    Full text link
    The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse super-linear dependence on nanowire diameter because the nanowires also act as plasmonic 'waveguides' that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for bio- and chemical-sensing

    Mapping assessments instruments for headache disorders against the icf biopsychosocial model of health and disability

    Get PDF
    Headache disorders have a strong impact on sufferers’ lives. However, the “content” of assessment instruments addressing concepts, such as disability and quality of life (QoL), has not comprehensively been addressed. We searched SCOPUS for research papers in which outcome measures were used in adult populations of patients with migraine, tension-type headache (TTH), and cluster headache (CH). The content of single instruments was then mapped against the International Classification of Functioning, Disability, and Health. A total of 150 papers and 26 instruments were included: 15 addressed disability or impact, two addressed work-related difficulties, and nine addressed QoL. Few instruments were commonly used across the conditions and covered domains of functioning were impact on daily life activities, homework, school, and work-related tasks, leisure time, informal and family relations, pain, emotional difficulties, energy level, and impulse control. Most of the research is based on instruments that were developed for migraine, which is critical for CH, and the impact of headache disorders on work-related activities is poorly acknowledged. Further research is needed to expand the scope of headaches impact on daily life activities, and on environmental factors relevant to headache disorders to raise knowledge on the less represented areas, e.g., TTH impact

    Analytic Representation of The Dirac Equation

    Full text link
    In this paper we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wave functions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behavior of the particle-antiparticle relationship. We interpret the zitterbewegung and the result that a velocity measurement (of a Dirac particle) at any instant in time is, as reflections of the fact that the Dirac equation makes a spatially extended particle appear as a point in the present by forcing it to oscillate between the past and future at speed c. From this we infer that, although the form of the Dirac equation serves to make space and time appear on an equal footing mathematically, it is clear that they are still not on an equal footing from a physical point of view. On the other hand, the Foldy-Wouthuysen transformation, which connects the Dirac and square root operator, is unitary. Reflection on these results suggests that a more refined notion (than that of unitary equivalence) may be required for physical systems

    Quantitative assessment of chronic lung disease of infancy using computed tomography

    Get PDF
    The aims of this study were to determine whether infants and toddlers with chronic lung disease of infancy (CLDI) have smaller airways and lower lung density compared with full-term healthy controls. Multi-slice computed tomography (CT) chest scans were obtained at elevated lung volumes during a brief respiratory pause in sedated infants and toddlers;38 CLDI were compared with 39 full-term controls. For CLDI subjects, gestational age at birth ranged from 25 to 29 weeks. Airway size was measured for the trachea and the next three to four generations into the right lower lobe;lung volumes and tissue density were also measured. The relationship between airway size and airway generation differed between the CLDI and full-term groups;the sizes of the first and second airway generations were larger in the shorter CLDI than in the shorter full-term subjects. The increased size in the airways in the CLDI subjects was associated with increasing mechanical ventilation time in the neonatal period. CLDI subjects had a greater heterogeneity of lung density compared with full-term subjects. Our results indicate that quantitative analysis of multi-slice CT scans at elevated volumes provides important insights into the pulmonary pathology of infants and toddlers with CLDI
    • …
    corecore