63,304 research outputs found
Strongly Nonlinear Waves in 3D Phononic Crystals
Three dimensional phononic crystal ("sonic vacuum" without prestress) was assembled from 137 vertical cavities arranged in hexagonal pattern in Silicone matrix filled with stainless steel spheres. This system has unique strongly nonlinear properties with respect to wave propagation inherited from nonlinear Hertz type elastic contact interaction. Trains of strongly nonlinear solitary waves excited by short duration impact were investigated. Solitary wave with speed below sound speed in the air and reflection from the boundary of two "sonic vacuums" were detected
Lifetime of molecule-atom mixtures near a Feshbach resonance in 40K
We report a dramatic magnetic field dependence in the lifetime of trapped,
ultracold diatomic molecules created through an s-wave Feshbach resonance in
40K. The molecule lifetime increases from less than 1 ms away from the Feshbach
resonance to greater than 100 ms near resonance. We also have measured the
trapped atom lifetime as a function of magnetic field near the Feshbach
resonance; we find that the atom loss is more pronounced on the side of the
resonance containing the molecular bound state
A New Model for Evaluating the Future Options of Integrating Ground Source Heat Pumps in Building Construction
Decision-making for effective infrastructure integration is challenging because the performances of long-lasting objects
often depends on conditions which are either outside the control of the designer or difficult to foresee at the design
stage. In this paper we examine a new approach to estimating the range of cost-effective solutions for integrating
the construction/retrofit of two or more different types of infrastructure. Infrastructure integration has many perceived
benefits, but also faces serious new challenges and doubts from practitioners, particularly in sectors with complex
construction process, long asset lives, uncertain cost parameters, and slow and unwieldy decision-making, such as
is common with civil engineering works. We test all main options in integrating a ground source heat pump (GSHP)
system with the construction and retrofit of an archetypal, office building. A new simulation model is developed and
parameterized using actual data in the UK. We incorporate unavoidable uncertainties and randomness in how the
decisions are triggered, and test the effectiveness of proactive measures to embed future options. The model highlights
how sensitive the range of cost-effective solutions is to the setting of renewable energy incentives, discount rates,
technical performance and life-cycle asset management of interdependent infrastructure. This points to a clear need for
establishing appropriate regulatory standards. We expect this model to find increasing applications in the planning and
designing of integrated complexes of buildings, transport facilities, renewable energy supply, water supply and waste
management in dense urban areas, which are an increasingly key part of sustainable urban development
Off-diagonal magnetoimpedance in field-annealed Co-based amorphous ribbons
The off-diagonal magnetoimpedance in field-annealed CoFeSiB amorphous ribbons
was measured in the low-frequency range using a pick-up coil wound around the
sample. The asymmetric two-peak behavior of the field dependence of the
off-diagonal impedance was observed. The asymmetry is attributed to the
formation of a hard magnetic crystalline phase at the ribbon surface. The
experimental results are interpreted in terms of the surface impedance tensor.
It is assumed that the ribbon consists of an inner amorphous region and surface
crystalline layers. The coupling between the crystalline and amorphous phases
is described through an effective bias field. A qualitative agreement between
the calculated dependences and experimental data is demonstrated. The results
obtained may be useful for development of weak magnetic-field sensors.Comment: 19 pages, 6 figure
Strongly nonlinear waves in a chain of Teflon beads
One dimensional "sonic vacuum" type phononic crystals were assembled from a
chain of Teflon spheres with different diameters in a Teflon holder. It was
demonstrated for the first time that this polymer-based "sonic vacuum", with
exceptionally low elastic modulus of particles, supports propagation of
strongly nonlinear solitary waves with a very low speed.Comment: 33 pages, 6 figure
Measurement of positive and negative scattering lengths in a Fermi gas of atoms
An exotic superfluid phase has been predicted for an ultracold gas of
fermionic atoms. This phase requires strong attractive interactions in the gas,
or correspondingly atoms with a large, negative s-wave scattering length. Here
we report on progress toward realizing this predicted superfluid phase. We
present measurements of both large positive and large negative scattering
lengths in a quantum degenerate Fermi gas of atoms. Starting with a
two-component gas that has been evaporatively cooled to quantum degeneracy, we
create controllable, strong interactions between the atoms using a
magnetic-field Feshbach resonance. We then employ a novel rf spectroscopy
technique to directly measure the mean-field interaction energy, which is
proportional to the s-wave scattering length. Near the peak of the resonance we
observe a saturation of the interaction energy; it is in this strongly
interacting regime that superfluidity is predicted to occur. We have also
observed anisotropic expansion of the gas, which has recently been suggested as
a signature of superfluidity. However, we find that this can be attributed to a
purely collisional effect
- …