1,691 research outputs found

    Infinite impulse response modal filtering in visible adaptive optics

    Full text link
    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors

    Streamflow reduction induces early parental care in Salaria fluviatilis (Asso, 1801) males.

    Get PDF
    This study investigated the effect of hydrological stress (streamflow reduction) on the reproductive and nesting behaviour of freshwater blenny (Salaria fluviatilis) males in a Mediterranean-type stream in NE Spain (a tributary of the Ebro River). The investigation included two study periods: (i) before stream flow reduction (sampling in 2004) and (ii) afterwards (study year 2011). Nesting males in 2004 (N = 31) and 2011 (N = 11) were measured, weighed and photographed in the field. The size of the total egg cluster (male reproductive success) was measured and photographed for each nest found (N = 137 in 2004 and N = 28 in 2011). Nesting area was measured to determine nest density for each sampling period. The degree of secondary sexual traits (SSTs) development was measured later through the photographs. The age of males was assigned according to the length-intervals established by Vinyoles and De Sostoa (2007) for this species in the same study area. After flow reduction in 2011, the flooded area of the river bed was reduced by more than 80%. A great proportion of small males (1 year old) with developed SSTs (cephalic crest and anal glands) were found to defend a nest. This is the first time that parental care is found for the male of the freshwater blenny at a young age. Total cluster size (mean SE) is halved under the low flow conditions (from 45.4 2.8 cm2 to 22.9 2.7 cm2), but an increase in the number of partial clusters per nest was found. This study highlights the sexual plasticity of freshwater blenny males depending on environmental conditions and the vulnerability of this endangered species to the hydrological changes of anthropogenic origin in Spain

    Magnetic Fields at First Order Phase Transition: A Threat to Electroweak Baryogenesis

    Get PDF
    The generation of the observed baryon asymmetry may have taken place during the electroweak phase transition, thus involving physics testable at LHC, a scenario dubbed electroweak baryogenesis. In this paper we point out that the magnetic field which is produced in the bubbles of a first order phase transition endangers the baryon asymmetry produced in the bubble walls. The reason being that the produced magnetic field couples to the sphaleron magnetic moment and lowers the sphaleron energy; this strengthens the sphaleron transitions inside the bubbles and triggers a more effective wash out of the baryon asymmetry. We apply this scenario to the Minimal Supersymmetric extension of the Standard Model (MSSM) where, in the absence of a magnetic field, successful electroweak baryogenesis requires the lightest CP-even Higgs and the right-handed stop masses to be lighter than about 127 GeV and 120 GeV, respectively. We show that even for moderate values of the magnetic field, the Higgs mass required to preserve the baryon asymmetry is below the present experimental bound. As a consequence electroweak baryogenesis within the MSSM should be confronted on the one hand to future measurements at the LHC on the Higgs and the right-handed stop masses, and on the other hand to more precise calculations of the magnetic field produced at the electroweak phase transition.Comment: 16 pages, 4 figures. Minor corrections and references added to match published versio

    Descripcion de los metodos EPT y MyB.

    Get PDF

    Refining the predictions of supersymmetric CP-violating models: A top-down approach

    Full text link
    We explore in detail the consequences of the CP-violating phases residing in the supersymmetric and soft SUSY breaking parameters in the approximation that family flavour mixings are ignored. We allow for non-universal boundary conditions and in such a consideration the model is described by twelve independent CP-violating phases and one angle which misaligns the vacuum expectation values (VEVs) of the Higgs scalars. We run two-loop renormalization group equations (RGEs), for all parameters involved, including phases, and we properly treat the minimization conditions using the one-loop effective potential with CP-violating phases included. We show that the two-loop running of phases may induce sizable effects for the electric dipole moments (EDMs) that are absent in the one-loop RGE analysis. Also important corrections to the EDMs are induced by the Higgs VEVs misalignment angle which are sizable in the large tanb region. Scanning the available parameter space we seek regions compatible with accelerator and cosmological data with emphasis on rapid neutralino annihilations through a Higgs resonance. It is shown that large CP-violating phases, as required in Baryogenesis scenarios, can be tuned to obtain agreement with WMAP3 cold dark matter constraints, EDMs and all available accelerator data, in extended regions of the parameter space which may be accessible to LHC.Comment: 41 pages, 22 eps figures. A reference added and a typo corrected; version to appear in JHE

    CP violation in the secluded U(1)'-extended MSSM

    Full text link
    We study the Higgs sector of the secluded U(1)U(1)'-extended MSSM (sMSSM) focusing on CP violation. Using the one-loop effective potential that includes contributions from quarks and squarks in the third generation, we search for the allowed region under theoretical and experimental constraints. It is found that the possible region for the electroweak vacuum to exist is quite limited, depending on the parameters in the model. The masses and couplings of the Higgs bosons are calculated with/without CP violation. Even at the tree level, CP violation is possible by complex soft SUSY breaking masses. Similar to the CPX scenario in the MSSM, the scalar-pseudoscalar mixing enables the lightest Higgs boson mass to become smaller than the ZZ boson mass while the coupling with the ZZ boson is sufficiently suppressed to avoid the LEP experimental constraints. However, unlike the CPX scenario, large μ\mu and AA are not required for the realization of large CP violation. The typical spectrum of the SUSY particles is thus different. We also investigate the possible upper bound of the lightest Higgs boson in the case of spontaneous CP violation. The maximal value of it can reach above 100 GeV with maximal CP-violating phases.Comment: 28 pages, 16 figures, JHEP styl

    Semi-Analytic Calculation of the Gravitational Wave Signal From the Electroweak Phase Transition for General Quartic Scalar Effective Potentials

    Full text link
    Upcoming gravitational wave (GW) detectors might detect a stochastic background of GWs potentially arising from many possible sources, including bubble collisions from a strongly first-order electroweak phase transition. We investigate whether it is possible to connect, via a semi-analytical approximation to the tunneling rate of scalar fields with quartic potentials, the GW signal through detonations with the parameters entering the potential that drives the electroweak phase transition. To this end, we consider a finite temperature effective potential similar in form to the Higgs potential in the Standard Model (SM). In the context of a semi-analytic approximation to the three dimensional Euclidean action, we derive a general approximate form for the tunneling temperature and the relevant GW parameters. We explore the GW signal across the parameter space describing the potential which drives the phase transition. We comment on the potential detectability of a GW signal with future experiments, and physical relevance of the associated potential parameters in the context of theories which have effective potentials similar in form to that of the SM. In particular we consider singlet, triplet, higher dimensional operators, and top-flavor extensions to the Higgs sector of the SM. We find that the addition of a temperature independent cubic term in the potential, arising from a gauge singlet for instance, can greatly enhance the GW power. The other parameters have milder, but potentially noticeable, effects.Comment: accepted by JCAP, revisions: removed turbulence contribution, minor changes to experimental sensitivity, fixed various minor typos and text revisions, added references, made it clear we consider only detonations; 17 pages, 4 figures, revtex

    Tuning interfacial domain walls in GdCo/Gd/GdCo′ spring magnets

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.Spring magnets based on GdCo multilayers have been prepared to study the nucleation and evolution of interfacial domain walls (iDWs) depending on layer composition and interlayer coupling. GdCo alloy compositions in each layer were chosen so that their net magnetization aligns either with the Gd (Gd35Co65) or Co(Gd11Co89) sublattices. This condition forces an antiparallel arrangement of the layers' net magnetization and leads to nucleation of iDWs above critical magnetic fields whose values are dictated by the interplay between Zeeman and exchange energies. By combining x-ray resonant magnetic scattering with Kerr magnetometry, we provide detailed insight into the nucleation and spatial profile of the iDWs. For strong coupling (GdCo/GdCo′ bilayer), iDWs are centered at the interface but with asymmetric width depending on each layer magnetization. When interlayer coupling is weakened by introducing a thin Gd interlayer, the exchange spring effect becomes restricted to a lower temperature and field range than observed in the bilayer structure. Due to the ferromagnetic alignment between the high magnetization Gd35Co65 layer and the Gd interlayer, the iDW shrinks and moves into the lower exchange Gd interlayer, causing a reduction of iDW energy.Work supported by Spanish Ministerio de Economía y Competitividad (MINECO) under grant FIS2013-45469 and Spanish Ministerio de Ciencia e Innovacion (MICINN) under grant FIS2008-06249. Work at Argonne was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.Peer Reviewe
    corecore