5,635 research outputs found

    The Electrostatic Ion Beam Trap : a mass spectrometer of infinite mass range

    Full text link
    We study the ions dynamics inside an Electrostatic Ion Beam Trap (EIBT) and show that the stability of the trapping is ruled by a Hill's equation. This unexpectedly demonstrates that an EIBT, in the reference frame of the ions works very similar to a quadrupole trap. The parallelism between these two kinds of traps is illustrated by comparing experimental and theoretical stability diagrams of the EIBT. The main difference with quadrupole traps is that the stability depends only on the ratio of the acceleration and trapping electrostatic potentials, not on the mass nor the charge of the ions. All kinds of ions can be trapped simultaneously and since parametric resonances are proportional to the square root of the charge/mass ratio the EIBT can be used as a mass spectrometer of infinite mass range

    Shape in an Atom of Space: Exploring quantum geometry phenomenology

    Full text link
    A phenomenology for the deep spatial geometry of loop quantum gravity is introduced. In the context of a simple model, an atom of space, it is shown how purely combinatorial structures can affect observations. The angle operator is used to develop a model of angular corrections to local, continuum flat-space 3-geometries. The physical effects involve neither breaking of local Lorentz invariance nor Planck scale suppression, but rather reply on only the combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde

    Neutralizing antibody response during acute and chronic hepatitis C virus infection

    Get PDF
    Little is known about the role of Abs in determining the outcome of hepatitis C virus (HCV) infection. By using infectious retroviral pseudotypes bearing HCV glycoproteins, we measured neutralizing Ab (nAb) responses during acute and chronic HCV infection. In seven acutely infected health care workers, only two developed a nAb response that failed to associate with viral clearance. In contrast, the majority of chronically infected patients had nAbs. To determine the kinetics of strain-specific and crossreactive nAb emergence, we studied patient H, the source of the prototype genotype 1a H77 HCV strain. An early weak nAb response, specific for the autologous virus, was detected at seroconversion. However, neutralization of heterologous viruses was detected only between 33 and 111 weeks of infection. We also examined the development of nAbs in 10 chimpanzees infected with H77 clonal virus. No nAb responses were detected in three animals that cleared virus, whereas strain-specific nAbs were detected in six of the seven chronically infected animals after approximately 50 weeks of infection. The delayed appearance of high titer crossreactive nAbs in chronically infected patients suggests that selective mechanism(s) may operate to prevent the appearance of these Abs during acute infection. The long-term persistence of these nAbs in chronically infected patients may regulate viral replication

    About the dynamics and thermodynamics of trapped ions

    Full text link
    This tutorial introduces the dynamics of charged particles in a radiofrequency trap in a very general manner to point out the differences between the dynamics in a quadrupole and in a multipole trap. When dense samples are trapped, the dynamics is modified by the Coulomb repulsion between ions. To take into account this repulsion, we propose to use a method, originally developed for particles in Penning trap, that model the ion cloud as a cold fluid. This method can not reproduce the organisation of cold clouds as crystals but it allows one to scale the size of large samples with the trapping parameters and the number of ions trapped, for different linear geometries of trap.Comment: accepted for publication in the "Modern Applications of Trapped Ions" special issu

    Holographic Formulation of Quantum Supergravity

    Get PDF
    We show that N=1{\cal N}=1 supergravity with a cosmological constant can be expressed as constrained topological field theory based on the supergroup Osp(14)Osp(1|4). The theory is then extended to include timelike boundaries with finite spatial area. Consistent boundary conditions are found which induce a boundary theory based on a supersymmetric Chern-Simons theory. The boundary state space is constructed from states of the boundary supersymmetric Chern-Simons theory on the punctured two sphere and naturally satisfies the Bekenstein bound, where area is measured by the area operator of quantum supergravity.Comment: 30 pages, no figur

    Penning traps as a versatile tool for precise experiments in fundamental physics

    Full text link
    This review article describes the trapping of charged particles. The main principles of electromagnetic confinement of various species from elementary particles to heavy atoms are briefly described. The preparation and manipulation with trapped single particles, as well as methods of frequency measurements, providing unprecedented precision, are discussed. Unique applications of Penning traps in fundamental physics are presented. Ultra-precise trap-measurements of masses and magnetic moments of elementary particles (electrons, positrons, protons and antiprotons) confirm CPT-conservation, and allow accurate determination of the fine-structure constant alpha and other fundamental constants. This together with the information on the unitarity of the quark-mixing matrix, derived from the trap-measurements of atomic masses, serves for assessment of the Standard Model of the physics world. Direct mass measurements of nuclides targeted to some advanced problems of astrophysics and nuclear physics are also presented

    Spatial Hypersurfaces in Causal Set Cosmology

    Full text link
    Within the causal set approach to quantum gravity, a discrete analog of a spacelike region is a set of unrelated elements, or an antichain. In the continuum approximation of the theory, a moment-of-time hypersurface is well represented by an inextendible antichain. We construct a richer structure corresponding to a thickening of this antichain containing non-trivial geometric and topological information. We find that covariant observables can be associated with such thickened antichains and transitions between them, in classical stochastic growth models of causal sets. This construction highlights the difference between the covariant measure on causal set cosmology and the standard sum-over-histories approach: the measure is assigned to completed histories rather than to histories on a restricted spacetime region. The resulting re-phrasing of the sum-over-histories may be fruitful in other approaches to quantum gravity.Comment: Revtex, 12 pages, 2 figure

    Dynamics of axialized laser-cooled ions in a Penning trap

    Full text link
    We report the experimental characterization of axialization - a method of reducing the magnetron motion of a small number of ions stored in a Penning trap. This is an important step in the investigation of the suitability of Penning traps for quantum information processing. The magnetron motion was coupled to the laser-cooled modified cyclotron motion by the application of a near-resonant oscillating quadrupole potential (the "axialization drive"). Measurement of cooling rates of the radial motions of the ions showed an order-of-magnitude increase in the damping rate of the magnetron motion with the axialization drive applied. The experimental results are in good qualitative agreement with a recent theoretical study. In particular, a classical avoided crossing was observed in the motional frequencies as the axialization drive frequency was swept through the optimum value, proving that axialization is indeed a resonant effect.Comment: 8 pages, 9 figure

    Conceptual design study for heat exhaust management in the ARC fusion pilot plant

    Full text link
    The ARC pilot plant conceptual design study has been extended beyond its initial scope [B. N. Sorbom et al., FED 100 (2015) 378] to explore options for managing ~525 MW of fusion power generated in a compact, high field (B_0 = 9.2 T) tokamak that is approximately the size of JET (R_0 = 3.3 m). Taking advantage of ARC's novel design - demountable high temperature superconductor toroidal field (TF) magnets, poloidal magnetic field coils located inside the TF, and vacuum vessel (VV) immersed in molten salt FLiBe blanket - this follow-on study has identified innovative and potentially robust power exhaust management solutions.Comment: Accepted by Fusion Engineering and Desig
    corecore