15 research outputs found
Understanding the importance of selenium and selenoproteins in muscle function
Selenium is an essential trace element. In cattle, selenium deficiency causes dysfunction of various organs, including skeletal and cardiac muscles. In humans as well, lack of selenium is associated with many disorders, but despite accumulation of clinical reports, muscle diseases are not generally considered on the list. The goal of this review is to establish the connection between clinical observations and the most recent advances obtained in selenium biology. Recent results about a possible role of selenium-containing proteins in muscle formation and repair have been collected. Selenoprotein N is the first selenoprotein linked to genetic disorders consisting of different forms of congenital muscular dystrophies. Understanding the muscle disorders associated with selenium deficiency or selenoprotein N dysfunction is an essential step in defining the causes of the disease and obtaining a better comprehension of the mechanisms involved in muscle formation and maintenance
Uncovering the Importance of Selenium in Muscle Disease
A connection between selenium bioavailability and development of muscular
disorders both in humans and livestock has been established for a long time.
With the development of genomics, the function of several selenoproteins was
shown to be involved in muscle activity, including SELENON, which was linked to
an inherited form of myopathy. Development of animal models has helped to dissect
the physiological dysfunction due to mutation in the SELENON gene; however the
molecular activity remains elusive and only recent analysis using both in vivo and
in vitro experiment provided hints toward its function in oxidative stress defence
and calcium transport control. This review sets out to summarise most recent findings
for the importance of selenium in muscle function and the contribution of this
information to the design of strategies to cure the diseases
The Arctic plant aboveground biomass synthesis dataset
Abstract
Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g mâ2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic
Landscape Change Detected over a Half Century in the Arctic National Wildlife Refuge Using High-Resolution Aerial Imagery
Rapid warming has occurred over the past 50 years in Arctic Alaska, where temperature strongly affects ecological patterns and processes. To document landscape change over a half century in the Arctic National Wildlife Refuge, Alaska, we visually interpreted geomorphic and vegetation changes on time series of coregistered high-resolution imagery. We used aerial photographs for two time periods, 1947–1955 and 1978–1988, and Quick Bird and IKONOS satellite images for a third period, 2000–2007. The stratified random sample had five sites in each of seven ecoregions, with a systematic grid of 100 points per site. At each point in each time period, we recorded vegetation type, microtopography, and surface water. Change types were then assigned based on differences detected between the images. Overall, 23% of the points underwent some type of change over the ~50-year study period. Weighted by area of each ecoregion, we estimated that 18% of the Refuge had changed. The most common changes were wildfire and postfire succession, shrub and tree increase in the absence of fire, river erosion and deposition, and ice-wedge degradation. Ice-wedge degradation occurred mainly in the Tundra Biome, shrub increase and river changes in the Mountain Biome, and fire and postfire succession in the Boreal Biome. Changes in the Tundra Biome tended to be related to landscape wetting, mainly from increased wet troughs caused by ice-wedge degradation. The Boreal Biome tended to have changes associated with landscape drying, including recent wildfire, lake area decrease, and land surface drying. The second time interval, after ~1982, coincided with accelerated climate warming and had slightly greater rates of change
Shape Abnormalities of the Caudate Nucleus Correlate with Poorer Gait and Balance:Results from a Subset of the LADIS Study
OBJECTIVE: Functional deficits seen in several neurodegenerative disorders have been linked with dysfunction in fronto-striatal circuits and with associated shape alterations in striatal structures. The severity of visible white matter changes (WMC) on MRI has been found to correlate with poorer performance on measures of gait and balance. This study aimed to determine whether striatal volume and shape changes were correlated with gait dysfunction. METHOD: MRI scans and clinical gait/balance data (scores from the SPPB - Short Physical Performance Battery) were sourced from 66 subjects in the previously-published LADIS trial, which was performed in >65 y.o. non-disabled individuals with WMC at study entry. Data were obtained at study entry and at three-year follow-up. Caudate nuclei and putamina were manually traced using a previously published method, and volumes calculated. The relationships between volume and physical performance on the SPPB were investigated with shape analysis utilising the SPHARM toolkit. RESULTS: There was no correlation between the severity of WMC and striatal volumes. Caudate nuclei volume correlated with performance on the SPPB at baseline, but not at follow-up, with subsequent shape analysis showing regionalisation of left caudate changes in areas corresponding to inputs of the dorsolateral prefrontal, premotor and motor cortex. There was no correlation between putamen volumes and performance on the SPPB. CONCLUSION: Disruption in frontostriatal circuits may play a role in mediating poorer physical performance in individuals with white matter changes. Striatal volume and shape changes may be suitable biomarkers for functional changes in this population
Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses
Ecosystems in the North American Arctic-Boreal Zone (ABZ) experience a diverse set of disturbances associated with wildfire, permafrost dynamics, geomorphic processes, insect outbreaks and pathogens, extreme weather events, and human activity. Climate warming in the ABZ is occurring at over twice the rate of the global average, and as a result the extent, frequency, and severity of these disturbances are increasing rapidly. Disturbances in the ABZ span a wide gradient of spatiotemporal scales and have varying impacts on ecosystem properties and function. However, many ABZ disturbances are relatively understudied and have different sensitivities to climate and trajectories of recovery, resulting in considerable uncertainty in the impacts of climate warming and human land use on ABZ vegetation dynamics and in the interactions between disturbance types. Here we review the current knowledge of ABZ disturbances and their precursors, ecosystem impacts, temporal frequencies, spatial extents, and severity. We also summarize current knowledge of interactions and feedbacks among ABZ disturbances and characterize typical trajectories of vegetation loss and recovery in response to ecosystem disturbance using satellite time-series. We conclude with a summary of critical data and knowledge gaps and identify priorities for future study