2,043 research outputs found

    One-loop Beta Functions for the Orientable Non-commutative Gross-Neveu Model

    Get PDF
    We compute at the one-loop order the beta-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The beta-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.Comment: 16 pages, 9 figure

    A generalized Pancharatnam geometric phase formula for three level systems

    Get PDF
    We describe a generalisation of the well known Pancharatnam geometric phase formula for two level systems, to evolution of a three-level system along a geodesic triangle in state space. This is achieved by using a recently developed generalisation of the Poincare sphere method, to represent pure states of a three-level quantum system in a convenient geometrical manner. The construction depends on the properties of the group SU(3)\/ and its generators in the defining representation, and uses geometrical objects and operations in an eight dimensional real Euclidean space. Implications for an n-level system are also discussed.Comment: 12 pages, Revtex, one figure, epsf used for figure insertio

    Ultra-High Energy Neutrino Fluxes: New Constraints and Implications

    Full text link
    We apply new upper limits on neutrino fluxes and the diffuse extragalactic component of the GeV gamma-ray flux to various scenarios for ultra high energy cosmic rays and neutrinos. As a result we find that extra-galactic top-down sources can not contribute significantly to the observed flux of highest energy cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce cosmic rays via interactions with relic neutrinos is practically ruled out if cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure

    A Bisognano-Wichmann-like Theorem in a Certain Case of a Non Bifurcate Event Horizon related to an Extreme Reissner-Nordstr\"om Black Hole

    Full text link
    Thermal Wightman functions of a massless scalar field are studied within the framework of a ``near horizon'' static background model of an extremal R-N black hole. This model is built up by using global Carter-like coordinates over an infinite set of Bertotti-Robinson submanifolds glued together. The analytical extendibility beyond the horizon is imposed as constraints on (thermal) Wightman's functions defined on a Bertotti-Robinson sub manifold. It turns out that only the Bertotti-Robinson vacuum state, i.e. T=0T=0, satisfies the above requirement. Furthermore the extension of this state onto the whole manifold is proved to coincide exactly with the vacuum state in the global Carter-like coordinates. Hence a theorem similar to Bisognano-Wichmann theorem for the Minkowski space-time in terms of Wightman functions holds with vanishing ``Unruh-Rindler temperature''. Furtermore, the Carter-like vacuum restricted to a Bertotti-Robinson region, resulting a pure state there, has vanishing entropy despite of the presence of event horizons. Some comments on the real extreme R-N black hole are given

    Modified Gravity via Spontaneous Symmetry Breaking

    Full text link
    We construct effective field theories in which gravity is modified via spontaneous breaking of local Lorentz invariance. This is a gravitational analogue of the Higgs mechanism. These theories possess additional graviton modes and modified dispersion relations. They are manifestly well-behaved in the UV and free of discontinuities of the van Dam-Veltman-Zakharov type, ensuring compatibility with standard tests of gravity. They may have important phenomenological effects on large distance scales, offering an alternative to dark energy. For the case in which the symmetry is broken by a vector field with the wrong sign mass term, we identify four massless graviton modes (all with positive-definite norm for a suitable choice of a parameter) and show the absence of the discontinuity.Comment: 5 pages; revised versio

    Two Gallium data sets, spin flavour precession and KamLAND

    Full text link
    We reexamine the possibility of a time modulation of the low energy solar neutrino flux which is suggested by the average decrease of the Ga data in line with our previous arguments. We perform two separate fits to the solar neutrino data, one corresponding to 'high' and the other to 'low' Ga data, associated with low and high solar activity respectively. We therefore consider an alternative to the conventional solar+KamLAND fitting, which allows one to explore the much wider range of the θ12\theta_{12} angle permitted by the KamLAND fitting alone. We find a solution with parameters Δm212=8.2×105eV2,tan2θ=0.31\Delta m^2_{21}=8.2\times 10^{-5} eV^2, tan^{2}\theta=0.31 in which the 'high' and the 'low' Ga rates lie far apart and are close to their central values and is of comparable quality to the global best fit, where these rates lie much closer to each other. This is an indication that the best fit in which all solar and KamLAND data are used is not a good measure of the separation of the two Ga data sets, as the information from the low energy neutrino modulation is dissimulated in the wealth of data. Furthermore for the parameter set proposed one obtains an equally good fit to the KamLAND energy spectrum and an even better fit than the 'conventional' LMA one for the reactor antineutrino survival probability as measured by KamLAND.Comment: V2: 15 pages, 3 eps figures, fit improved, final version to appear in Journal of Physics
    corecore