1,788 research outputs found

    Phase estimation as a quantum nondemolition measurement

    Get PDF
    The phase estimation algorithm, which is at the heart of a variety of quantum algorithms, including Shor's factoring algorithm, allows a quantum computer to accurately determine an eigenvalue of an unitary operator. Quantum nondemolition measurements are a quantum mechanical procedure, used to overcome the standard quantum limit when measuring an observable. We show that the phase estimation algorithm, in both the discrete and continuous variable setting, can be viewed as a quantum nondemolition measurement.Comment: 4 pages, 2 figures, RevTeX

    Communicating continuous quantum variables between different Lorentz frames

    Full text link
    We show how to communicate Heisenberg-limited continuous (quantum) variables between Alice and Bob in the case where they occupy two inertial reference frames that differ by an unknown Lorentz boost. There are two effects that need to be overcome: the Doppler shift and the absence of synchronized clocks. Furthermore, we show how Alice and Bob can share Doppler-invariant entanglement, and we demonstrate that the protocol is robust under photon loss.Comment: 4 pages, 1 figur

    Simulating quantum effects of cosmological expansion using a static ion trap

    Full text link
    We propose a new experimental testbed that uses ions in the collective ground state of a static trap for studying the analog of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analog gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analog of an expanding universe using trapped ions and enlarges the validity of the ion-trap analogy to a wide range of interesting cases.Comment: (v2) revisions based on referee comments, figure added for clarity; (v1) 17 pages, no figure

    Conditional two mode squeezed vacuum teleportation

    Get PDF
    We show, by making conditional measurements on the Einstein-Podolsky-Rosen (EPR) squeezed vacuum, that one can improve the efficacy of teleportation for both the position difference, momentum sum and number difference, phase sum continuous variable teleportation protocols. We investigate the relative abilities of the standard and conditional EPR states, and show that by conditioning we can improve the fidelity of teleportation of coherent states from below to above the Fˉ=2/3\bar{F} = 2/3 boundary.Comment: 18 pages, RevTeX4, 10 figures postscrip

    Quantum Computation with Coherent States, Linear Interactions and Superposed Resources

    Get PDF
    We show that quantum computation circuits with coherent states as the logical qubits can be constructed using very simple linear networks, conditional measurements and coherent superposition resource states

    Entangled Coherent State Qubits in an Ion Trap

    Get PDF
    We show how entangled qubits can be encoded as entangled coherent states of two-dimensional centre-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical Bell state, and we introduce a proposal for entanglement transfer from the two vibrational modes to the electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving methods.Comment: 4 pages, No figures, accepted to PRA, minor chang

    Mesoscopic one-way channels for quantum state transfer via the Quantum Hall Effect

    Get PDF
    We show that the one-way channel formalism of quantum optics has a physical realisation in electronic systems. In particular, we show that magnetic edge states form unidirectional quantum channels capable of coherently transporting electronic quantum information. Using the equivalence between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is feasible with reasonable experimental parameters. We discuss how this protocol may be used to transfer information encoded in number, charge or spin states of quantum dots, so it may prove useful for transferring quantum information between parts of a solid-state quantum computer.Comment: 4 pages, 3 figure

    Charge Transport in a Quantum Electromechanical System

    Get PDF
    We describe a quantum electromechanical system(QEMS) comprising a single quantum dot harmonically bound between two electrodes and facilitating a tunneling current between them. An example of such a system is a fullerene molecule between two metal electrodes [Park et al., Nature, 407, 57 (2000)]. The description is based on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and thus incorporates the dynamics of both diagonal (population) and off diagonal (coherence) terms. We derive coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of freedom, including damping of the vibration and thermo-mechanical noise. This dynamical description is related to observable features of the system including the stationary current as a function of bias voltage.Comment: To appear in Phys. Rev. B., 13 pages, single colum
    • …
    corecore