1,788 research outputs found
Phase estimation as a quantum nondemolition measurement
The phase estimation algorithm, which is at the heart of a variety of quantum
algorithms, including Shor's factoring algorithm, allows a quantum computer to
accurately determine an eigenvalue of an unitary operator. Quantum
nondemolition measurements are a quantum mechanical procedure, used to overcome
the standard quantum limit when measuring an observable. We show that the phase
estimation algorithm, in both the discrete and continuous variable setting, can
be viewed as a quantum nondemolition measurement.Comment: 4 pages, 2 figures, RevTeX
Communicating continuous quantum variables between different Lorentz frames
We show how to communicate Heisenberg-limited continuous (quantum) variables
between Alice and Bob in the case where they occupy two inertial reference
frames that differ by an unknown Lorentz boost. There are two effects that need
to be overcome: the Doppler shift and the absence of synchronized clocks.
Furthermore, we show how Alice and Bob can share Doppler-invariant
entanglement, and we demonstrate that the protocol is robust under photon loss.Comment: 4 pages, 1 figur
Simulating quantum effects of cosmological expansion using a static ion trap
We propose a new experimental testbed that uses ions in the collective ground
state of a static trap for studying the analog of quantum-field effects in
cosmological spacetimes, including the Gibbons-Hawking effect for a single
detector in de Sitter spacetime, as well as the possibility of modeling
inflationary structure formation and the entanglement signature of de Sitter
spacetime. To date, proposals for using trapped ions in analog gravity
experiments have simulated the effect of gravity on the field modes by directly
manipulating the ions' motion. In contrast, by associating laboratory time with
conformal time in the simulated universe, we can encode the full effect of
curvature in the modulation of the laser used to couple the ions' vibrational
motion and electronic states. This model simplifies the experimental
requirements for modeling the analog of an expanding universe using trapped
ions and enlarges the validity of the ion-trap analogy to a wide range of
interesting cases.Comment: (v2) revisions based on referee comments, figure added for clarity;
(v1) 17 pages, no figure
Conditional two mode squeezed vacuum teleportation
We show, by making conditional measurements on the Einstein-Podolsky-Rosen
(EPR) squeezed vacuum, that one can improve the efficacy of teleportation for
both the position difference, momentum sum and number difference, phase sum
continuous variable teleportation protocols. We investigate the relative
abilities of the standard and conditional EPR states, and show that by
conditioning we can improve the fidelity of teleportation of coherent states
from below to above the boundary.Comment: 18 pages, RevTeX4, 10 figures postscrip
Quantum Computation with Coherent States, Linear Interactions and Superposed Resources
We show that quantum computation circuits with coherent states as the logical
qubits can be constructed using very simple linear networks, conditional
measurements and coherent superposition resource states
Entangled Coherent State Qubits in an Ion Trap
We show how entangled qubits can be encoded as entangled coherent states of
two-dimensional centre-of-mass vibrational motion for two ions in an ion trap.
The entangled qubit state is equivalent to the canonical Bell state, and we
introduce a proposal for entanglement transfer from the two vibrational modes
to the electronic states of the two ions in order for the Bell state to be
detected by resonance fluorescence shelving methods.Comment: 4 pages, No figures, accepted to PRA, minor chang
Mesoscopic one-way channels for quantum state transfer via the Quantum Hall Effect
We show that the one-way channel formalism of quantum optics has a physical
realisation in electronic systems. In particular, we show that magnetic edge
states form unidirectional quantum channels capable of coherently transporting
electronic quantum information. Using the equivalence between one-way photonic
channels and magnetic edge states, we adapt a proposal for quantum state
transfer to mesoscopic systems using edge states as a quantum channel, and show
that it is feasible with reasonable experimental parameters. We discuss how
this protocol may be used to transfer information encoded in number, charge or
spin states of quantum dots, so it may prove useful for transferring quantum
information between parts of a solid-state quantum computer.Comment: 4 pages, 3 figure
Charge Transport in a Quantum Electromechanical System
We describe a quantum electromechanical system(QEMS) comprising a single
quantum dot harmonically bound between two electrodes and facilitating a
tunneling current between them. An example of such a system is a fullerene
molecule between two metal electrodes [Park et al., Nature, 407, 57 (2000)].
The description is based on a quantum master equation for the density operator
of the electronic and vibrational degrees of freedom and thus incorporates the
dynamics of both diagonal (population) and off diagonal (coherence) terms. We
derive coupled equations of motion for the electron occupation number of the
dot and the vibrational degrees of freedom, including damping of the vibration
and thermo-mechanical noise. This dynamical description is related to
observable features of the system including the stationary current as a
function of bias voltage.Comment: To appear in Phys. Rev. B., 13 pages, single colum
- …