654 research outputs found

    Direct Measurement of Quantum Dot Spin Dynamics using Time-Resolved Resonance Fluorescence

    Full text link
    We temporally resolve the resonance fluorescence from an electron spin confined to a single self-assembled quantum dot to measure directly the spin's optical initialization and natural relaxation timescales. Our measurements demonstrate that spin initialization occurs on the order of microseconds in the Faraday configuration when a laser resonantly drives the quantum dot transition. We show that the mechanism mediating the optically induced spin-flip changes from electron-nuclei interaction to hole-mixing interaction at 0.6 Tesla external magnetic field. Spin relaxation measurements result in times on the order of milliseconds and suggest that a B−5B^{-5} magnetic field dependence, due to spin-orbit coupling, is sustained all the way down to 2.2 Tesla.Comment: An additional EPAPS file in PDF format is available for download at the publications section of our website http://www.amop.phy.cam.ac.uk/amop-ma

    Rigidity properties of a three-way prestressed segmented ceramic plate

    Get PDF
    Rigidity properties of three way prestressed segmented ceramic plat

    How to audit a business process excellence implementation?

    Get PDF

    Precise Switching of Flagellar Gene Expression in Escherichia Coli by the FlgM–FliA Regulatory Network

    Get PDF
    A remarkable feature of flagellar synthesis in Escherichia coli is that gene expression is sequential and coupled to the assembly process. The interaction of two key proteins, the flagellar sigma factor FliA and its anti-sigma factor FlgM serves as a major checkpoint in the assembly process that temporally separates middle and late gene expression. While the sequential nature within each gene class has been studied using large-scale transcriptional data, much less is known about the timing controlled by the checkpoint mechanism. In this article, we analyze timing, sensitivity and robustness of the FlgM–FliA core regulatory mechanism based on quantitative molecule data and a detailed stochastic as well as reduced deterministic reaction kinetics model. We find that the pool of free anti-sigma factor FlgM, accumulated during middle gene expression, acts as a molecular timer that determines the delay between successful completion of the hook basal body subunit and the start of expression of flagellar filament proteins. Furthermore, we find that the number of free FliA molecules needs to be tightly controlled for a precise switch from middle to late gene expression. A sensitivity analysis based on the reduced reaction kinetics model reveals that the checkpoint mechanism is very sensitive to changes in levels of competing sigma factors, allowing the bacterium to rapidly adapt to a changing environment. In addition, we find that the reduced model also shows a high sensitivity to the effective synthesis rates of FliA and FlgM. However, this high sensitivity does not generally carry over to the original parameters of transcriptional and translational processes in the detailed model. As a consequence, care has to be taken whenever interpreting results from the robustness analysis of reaction kinetic models comprising lumped or effective parameters

    Spectral library search for improved TMTpro labelled peptide assignment in human plasma proteomics

    Get PDF
    Funding Information: This work was supported by a research grant from the Danish Cardiovascular Academy, which is funded by the Novo Nordisk Foundation, grant number NNF20SA0067242 and the Danish Heart Foundation. Publisher Copyright: © 2023 The Authors. Proteomics published by Wiley-VCH GmbH.Clinical biomarker discovery is often based on the analysis of human plasma samples. However, the high dynamic range and complexity of plasma pose significant challenges to mass spectrometry-based proteomics. Current methods for improving protein identifications require laborious pre-analytical sample preparation. In this study, we developed and evaluated a TMTpro-specific spectral library for improved protein identification in human plasma proteomics. The library was constructed by LC-MS/MS analysis of highly fractionated TMTpro-tagged human plasma, human cell lysates, and relevant arterial tissues. The library was curated using several quality filters to ensure reliable peptide identifications. Our results show that spectral library searching using the TMTpro spectral library improves the identification of proteins in plasma samples compared to conventional sequence database searching. Protein identifications made by the spectral library search engine demonstrated a high degree of complementarity with the sequence database search engine, indicating the feasibility of increasing the number of protein identifications without additional pre-analytical sample preparation. The TMTpro-specific spectral library provides a resource for future plasma proteomics research and optimization of search algorithms for greater accuracy and speed in protein identifications in human plasma proteomics, and is made publicly available to the research community via ProteomeXchange with identifier PXD042546.publishersversionepub_ahead_of_prin

    Direct photonic coupling of a semiconductor quantum dot and a trapped ion.

    Get PDF
    Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.We acknowledge support by the University of Cambridge, the Alexander-von-Humboldt Stiftung, EPSRC (EP/H005676/1), the European Research Council (Grant numbers 240335 and 617985), EU-FP7 Marie Curie Initial Training Networks COMIQ and S3NANO.This is the accepted manuscript. The final version is available at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.123001

    Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3–5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6–8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement n°646625), the Biotechnology and Biological Sciences Research Council of the UK (BB/G023352/1), and Bayer Crop Science

    A Comparison of Low-Gravity Measurements On-Board Columbia During STS-40

    Get PDF
    The first NASA Spacelab Life Sciences mission (SLS-1) flew 5 June to 14 June 1991 on the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body\u27s adaptation to the low-gravity conditions of space flight and the body\u27s readjustment after the mission to the 1 g environment of earth. In addition to the life sciences experiments manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several principal investigators designed and flew specialized accelerometer systems to better assess the results of their experiments by means of a low-gravity environment characterization. This was also the first flight of the NASA Microgravity Science and Applications Division (MSAD) sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment accelerometer (OARE). We present a brief introduction to seven STS-40 accelerometer systems and discuss and compare the resulting data. During crew sleep periods, acceleration magnitudes in the 10-6 to 10-5 g range were recorded in the Spacelab module and on the GAS Bridge Assembly. Magnitudes increased to the 10-4 g level during periods of nominal crew activity. Vernier thruster firings caused acceleration shifts on the order of 10-4 g and primary thruster firings caused accelerations as great as 10-2 g. Frequency domain analysis revealed typical excitation of Orbiter and Spacelab structural modes at 3.5, 4.7, 5.2, 6.2, 7, and 17 Hz
    • …
    corecore