73 research outputs found
Altruism can proliferate through group/kin selection despite high random gene flow
The ways in which natural selection can allow the proliferation of
cooperative behavior have long been seen as a central problem in evolutionary
biology. Most of the literature has focused on interactions between pairs of
individuals and on linear public goods games. This emphasis led to the
conclusion that even modest levels of migration would pose a serious problem to
the spread of altruism in group structured populations. Here we challenge this
conclusion, by analyzing evolution in a framework which allows for complex
group interactions and random migration among groups. We conclude that
contingent forms of strong altruism can spread when rare under realistic group
sizes and levels of migration. Our analysis combines group-centric and
gene-centric perspectives, allows for arbitrary strength of selection, and
leads to extensions of Hamilton's rule for the spread of altruistic alleles,
applicable under broad conditions.Comment: 5 pages, 2 figures. Supplementary material with 50 pages and 26
figure
Evolution of Assortative Mating in a Population Expressing Dominance
In this article, we study the influence of dominance on the evolution of
assortative mating. We perform a population-genetic analysis of a two-locus
two-allele model. We consider a quantitative trait that is under a mixture
of frequency-independent stabilizing selection and density- and frequency-dependent
selection caused by intraspecific competition for a continuum of resources.
The trait is determined by a single (ecological) locus and expresses intermediate
dominance. The second (modifier) locus determines the degree of assortative
mating, which is expressed in females only. Assortative mating is based on
similarities in the quantitative trait (‘magic trait’ model).
Analytical conditions for the invasion of assortment modifiers are derived
in the limit of weak selection and weak assortment. For the full model, extensive
numerical iterations are performed to study the global dynamics. This allows
us to gain a better understanding of the interaction of the different selective
forces. Remarkably, depending on the size of modifier effects, dominance can
have different effects on the evolution of assortment. We show that dominance
hinders the evolution of assortment if modifier effects are small, but promotes
it if modifier effects are large. These findings differ from those in previous
work based on adaptive dynamics
Can hedgerow management mitigate the impacts of predation on songbird nest survival?
Nest predators can have significant impacts on songbird reproductive success. These impacts may be amplified by habitat simplification and here we test whether sympathetic management of farmland hedgerows can reduce nest depredation, especially by corvids. We test whether songbirds select nest sites according to structural features of hedgerows (including nest visibility and accessibility), and whether these features influence nest predation risk. Songbirds selected nesting sites affording higher vegetation cover above the nest, increased visibility on the nest-side of the hedgerow and reduced visibility on the far side of the hedge. Nest survival was unrelated to corvid abundance and only weakly related (at the egg stage) to corvid nest proximity. Nest survival at the chick stage was higher where vegetation structure restricted access to corvid-sized predators (averaging 0.78 vs. 0.53), and at nests close to potential vantage points. Overall nest survival was sensitive to hedgerow structure (accessibility) particularly at low exposure to corvid predation, while the overall impact of corvid exposure was dependent on the relationship involving proximity to vantage points. Nest survival over the chick stage was much higher (0.67) in stock-proof, trimmed and mechanically cut hedgerows, (which tended to provide lower side visibility and accessibility) than in recently laid, remnant or leggy hedgerows (0.18). Long-term reductions in the management of British hedgerows may therefore be exposing nesting songbirds to increased predation risk. We recommend regular rotational cutting of hedgerows to maintain a dense woody structure and thereby reduce songbird nest predation
Analytical Results for Individual and Group Selection of Any Intensity
The idea of evolutionary game theory is to relate the payoff of a game to reproductive success (= fitness). An underlying assumption in most models is that fitness is a linear function of the payoff. For stochastic evolutionary dynamics in finite populations, this leads to analytical results in the limit of weak selection, where the game has a small effect on overall fitness. But this linear function makes the analysis of strong selection difficult. Here, we show that analytical results can be obtained for any intensity of selection, if fitness is defined as an exponential function of payoff. This approach also works for group selection (= multi-level selection). We discuss the difference between our approach and that of inclusive fitness theory
Rapid Transition towards the Division of Labor via Evolution of Developmental Plasticity
A crucial step in several major evolutionary transitions is the division of labor between components of the emerging higher-level evolutionary unit. Examples include the separation of germ and soma in simple multicellular organisms, appearance of multiple cell types and organs in more complex organisms, and emergence of casts in eusocial insects. How the division of labor was achieved in the face of selfishness of lower-level units is controversial. I present a simple mathematical model describing the evolutionary emergence of the division of labor via developmental plasticity starting with a colony of undifferentiated cells and ending with completely differentiated multicellular organisms. I explore how the plausibility and the dynamics of the division of labor depend on its fitness advantage, mutation rate, costs of developmental plasticity, and the colony size. The model shows that the transition to differentiated multicellularity, which has happened many times in the history of life, can be achieved relatively easily. My approach is expandable in a number of directions including the emergence of multiple cell types, complex organs, or casts of eusocial insects
Does K-Selection Imply Prudent Predation?
none2C. Matessi; M. GattoMatessi, Carlo; Gatto, Marin
Mother\u2019s mitochondria and optimal offspring sex ratio
In certain cases, predicted by evolutionary theory of sex-allocation and confirmed by empirical evidence, animals adaptively change their progeny sex-ratio according to individual circumstances. Here we argue that a similar response of offspring sex-ratio must exist in relation to genetic variation of mothers' mitochondria, as a consequence of maternal inheritance of these organelles and of their influence on fitness resulting from their crucial role in metabolism. In fact, a mathematical analysis of evolutionary dynamics of sex-allocation mutants demonstrates that natural selection promotes an evolutionarily stable allocation policy where mothers with defective mitochondria generate only sons, while those with optimal mitochondria have female biased progenies
- …