337 research outputs found

    Volumetric assessment of myocardial viability in rats using 3D double contrast enhanced T1 and T2-weighted MRI

    Get PDF
    OBJECTIVE: Volumetric evaluation of the myocardial viability post-infarction in rats using 3D in vivo MR imaging at 7 T using injection of an extracellular paramagnetic contrast agent and intravascular superparamagnetic iron oxide nanoparticles in the same imaging session. MATERIALS AND METHODS: Five hours after induction of permanent myocardial infarction in rats (n=6), 3D in vivo T1- and T2-weighted MR Imaging was performed prior to and after Gd-DOTA injection (0.2 mmol/kg) and prior to and after nanoparticle injection (5 mg Fe/kg) to assess infarct size and myocardial viability. RESULTS: 3D MR Imaging using a successive contrast agent injection showed a difference of infarct size after Gd-DOTA injection on T1-weighted images compared to the one measured on T2-weighted images after Gd-DOTA and nanoparticle injection. CONCLUSION: The use of 3D T1- and T2-weighted MR Imaging using a double contrast agents protocol made possible the accurate characterization of myocardial infarction volume and allowed the detection of myocardial viability post-infarction in rats

    Assessment of myocardial viability in rats: Evaluation of a new method using superparamagnetic iron oxide nanoparticles and Gd-DOTA at high magnetic field

    Get PDF
    The aim of this study was to detect salvageable peri-infarction myocardium by MRI in rats after infarction, using with a double contrast agent (CA) protocol at 7 Tesla. Intravascular superparamagnetic iron oxide (SPIO) nanoparticles and an extracellular paramagnetic CA (Gd-DOTA) were used to characterize the peri-infarction zone, which may recover function after reperfusion occurs. Infarcted areas measured from T1-weighted (T1-w) images post Gd-DOTA administration were overestimated compared to histological TTC staining (52% +/- 3% of LV surface area vs. 40% +/- 3%, P=0.03) or to T2-w images post SPIO administration (41% +/- 4%, P=0.04), whereas areas measured from T2-w images post SPIO administration were not significantly different from those measured histologically (P=0.7). Viable and nonviable myocardium portions of ischemically injured myocardium were enhanced after diffusive Gd-DOTA injection. The subsequent injection of vascular SPIO nanoparticles enables the discrimination of viable peri-infarction regions by specifically altering the signal of the still-vascularized myocardium

    Seeking an "i-deal" balance: Schedule-flexibility i-deals as mediating mechanisms between supervisor emotional support and employee work and home performance

    Get PDF
    Requests for flexible work practices have become commonplace, with the aim of helping employees perform more effectively in both their private and work lives. One path for employees to secure flexible work is through the negotiation of individualized work arrangements, also known as “i-deals”. This study provides valuable insights into the nomological network of scheduleflexibility i-deals by drawing on the Conservation of Resources (COR) theory. We propose that, via resource accumulation, schedule-flexibility i-deals are a mechanism through which the emotional support of supervisors promotes employees' family performance and reduces deviant work behaviors. Drawing further on the COR framework, we examine two boundary conditions that guide employees' resource investment: perception of family-friendly environment and prosocial motivation. We collected multi-source data from employees working in South America and tested our hypotheses using structural equation modeling. Our results provide support for the key mediating role of schedule-flexibility i-deals. Moreover, the indirect relationship between supervisors' emotional support and family performance through schedule-flexibility i-deals is stronger in family-friendly organizational contexts, as well as when employees are prosocially motivated. Our results also show that, contrary to the expected effect, when prosocial motivation is high, employee supervisors' emotional support is positively linked to deviant behaviors. We contribute to the literature by emphasizing the roles of perceived resources at the levels of leaders (i.e., supervisors' emotional support), context (supervisors' perceptions of a family-friendly environment), and individuals (employees' prosocial motivation). We demonstrate the importance of these resources in establishing and sustaining schedule-flexibility i-deal

    Collaborative Gaze Channelling for Improved Cooperation During Robotic Assisted Surgery

    Get PDF
    The use of multiple robots for performing complex tasks is becoming a common practice for many robot applications. When different operators are involved, effective cooperation with anticipated manoeuvres is important for seamless, synergistic control of all the end-effectors. In this paper, the concept of Collaborative Gaze Channelling (CGC) is presented for improved control of surgical robots for a shared task. Through eye tracking, the fixations of each operator are monitored and presented in a shared surgical workspace. CGC permits remote or physically separated collaborators to share their intention by visualising the eye gaze of their counterparts, and thus recovers, to a certain extent, the information of mutual intent that we rely upon in a vis-à-vis working setting. In this study, the efficiency of surgical manipulation with and without CGC for controlling a pair of bimanual surgical robots is evaluated by analysing the level of coordination of two independent operators. Fitts' law is used to compare the quality of movement with or without CGC. A total of 40 subjects have been recruited for this study and the results show that the proposed CGC framework exhibits significant improvement (p<0.05) on all the motion indices used for quality assessment. This study demonstrates that visual guidance is an implicit yet effective way of communication during collaborative tasks for robotic surgery. Detailed experimental validation results demonstrate the potential clinical value of the proposed CGC framework. © 2012 Biomedical Engineering Society.link_to_subscribed_fulltex

    In utero time-course assessment of mouse embryo development using high resolution magnetic resonance imaging

    Get PDF
    International audienc

    A step towards stereotactic navigation during pelvic surgery: 3D nerve topography

    Get PDF
    Background: Long-term morbidity after multimodal treatment for rectal cancer is suggested to be mainly made up by nerve-injury-related dysfunctions. Stereotactic navigation for rectal surgery was shown to be feasible and will be facilitated by highlighting structures at risk of iatrogenic damage. The aim of this study was to investigate the ability to make a 3D map of the pelvic nerves with magnetic resonance imaging (MRI). Methods: A systematic review was performed to identify a main positional reference for each pelvic nerve and plexus. The nerves were manually delineated in 20 volunteers who were scanned with a 3-T MRI. The nerve identifiability rate and the likelihood of nerve identification correctness were determined. Results: The analysis included 61 studies on pelvic nerve anatomy. A main positional reference was defined for each nerve. On MRI, the sacral nerves, the lumbosacral plexus, and the obturator nerve could be identified bilaterally in all volunteers. The sympathetic trunk could be identified in 19 of 20 volunteers bilaterally (95%). The superior hypogastric plexus, the hypogastric nerve, and the inferior hypogastric plexus could be identified bilaterally in 14 (70%), 16 (80%), and 14 (70%) of the 20 volunteers, respectively. The pudendal nerve could be identified in 17 (85%) volunteers on the right side and in 13 (65%) volunteers on the left side. The levator ani nerve could be identified in only a few volunteers. Except for the levator ani nerve, the radiologist and the anatomist agreed that the delineated nerve depicted the correct nerve in 100% of the cases. Conclusion: Pelvic nerves at risk of injury are usually visible on high-resolution MRI w

    DejaVu: Intra-operative Simulation for Surgical Gesture Rehearsal

    Get PDF
    International audienceAdvances in surgical simulation and surgical augmented reality have changed the way surgeons prepare for practice and conduct medical procedures. Despite considerable interest from surgeons, the use of simulation is still predominantly confined to pre-operative training of surgical tasks and the lack of robustness of surgical augmented reality means that it is seldom used for surgical guidance. In this paper, we present DejaVu, a novel surgical simulation approach for intra-operative surgical gesture rehearsal. With DejaVu we aim at bridging the gap between pre-operative surgical simulation and crucial but not yet robust intra-operative surgical augmented reality. By exploiting intra-operative images we produce a simulation that faithfully matches the actual procedure without visual discrepancies and with an underlying physical modelling that performs real-time deformation of organs and surrounding tissues, surgeons can interact with the targeted organs through grasping, pulling or cutting to immediately rehearse their next gesture. We present results on different in vivo surgical procedures and demonstrate the feasibility of practical use of our system
    • 

    corecore