354 research outputs found

    Non-equilibrium dynamics in an interacting nanoparticle system

    Get PDF
    Non-equilibrium dynamics in an interacting Fe-C nanoparticle sample, exhibiting a low temperature spin glass like phase, has been studied by low frequency ac-susceptibility and magnetic relaxation experiments. The non-equilibrium behavior shows characteristic spin glass features, but some qualitative differences exist. The nature of these differences is discussed.Comment: 7 pages, 11 figure

    Soft x-ray magnetic circular dichroism study of weakly ferromagnetic Zn1x_{1-x}Vx_xO thin film

    Full text link
    We performed a soft x-ray magnetic circular dichroism (XMCD) study of a Zn1x_{1-x}Vx_xO thin film which showed small ferromagnetic moment. Field and temperature dependences of V 2pp XMCD signals indicated the coexistence of Curie-Weiss paramagnetic, antiferromagnetic, and possibly ferromagnetic V ions, quantitatively consistent with the magnetization measurements. We attribute the paramagnetic signal to V ions substituting Zn sites which are somewhat elongated along the c-axis

    Two Cases of Primary Malignant Fibrous Histiocytoma of the Liver: Immunohistochemical Expression of Ezrin and Its Relationship with Prognosis

    Get PDF
    Malignant fibrous histiocytoma (MFH) as soft tissue sarcoma would not be especially noteworthy, but primary hepatic MFH reports are extremely rare. Herein, we report ezrin expression in tumor tissues from two primary hepatic MFH cases with different prognoses. Cases 1 and 2 were both women, ages 45 and 70 years, respectively. Case 1 had an 11×10 cm liver tumor in segment (S) 3, and case 2 had two liver tumors, 12×8 cm in S5 and 10×7 cm in S8. Neither had any other systemic tumors. Cases 1 and 2 survived for two year and ten months and for eight and a half months, respectively, after the initial tumor resection. Microscopically, the tumors of these two cases were similar and showed proliferation of atypical cells, including spindle, pleomorphic and multi-nucleated giant cells arranged in storiform, sheet and/or fascicle patterns, with scattered foci of inflammatory cells, indicating MFH. Ezrin expression in tumor tissue from case 1 was sparse, whereas that of case 2 showed strong ezrin expression in many tumor cells. The present results indicate ezrin immunoreactivity in primary hepatic MFH to correlate possible with prognosis, which is consistent with reports on some other types of malignancies

    Metal-insulator Crossover Behavior at the Surface of NiS_2

    Full text link
    We have performed a detailed high-resolution electron spectroscopic investigation of NiS2_2 and related Se-substituted compounds NiS2x_{2-x}Sex_x, which are known to be gapped insulators in the bulk at all temperatures. A large spectral weight at the Fermi energy of the room temperature spectrum, in conjunction with the extreme surface sensitivity of the experimental probe, however, suggests that the surface layer is metallic at 300 K. Interestingly, the evolution of the spectral function with decreasing temperature is characterized by a continuous depletion of the single-particle spectral weight at the Fermi energy and the development of a gap-like structure below a characteristic temperature, providing evidence for a metal-insulator crossover behavior at the surfaces of NiS2_2 and of related compounds. These results provide a consistent description of the unusual transport properties observed in these systems.Comment: 12 pages, 3 figure

    Spin-Peierls phases in pyrochlore antiferromagnets

    Full text link
    In the highly frustrated pyrochlore magnet spins form a lattice of corner sharing tetrahedra. We show that the tetrahedral ``molecule'' at the heart of this structure undergoes a Jahn-Teller distortion when lattice motion is coupled to the antiferromagnetism. We extend this analysis to the full pyrochlore lattice by means of Landau theory and argue that it should exhibit spin-Peierls phases with bond order but no spin order. We find a range of Neel phases, with collinear, coplanar and noncoplanar order. While collinear Neel phases are easiest to generate microscopically, we also exhibit an interaction that gives rise to a coplanar state instead.Comment: REVTeX 4, 14 pages, 12 figures (best viewed in color

    Scaling behavior of the dipole coupling energy in two-dimensional disordered magnetic nanostructures

    Full text link
    Numerical calculations of the average dipole-coupling energy Eˉdip\bar E_\mathrm{dip} in two-dimensional disordered magnetic nanostructures are performed as function of the particle coverage CC. We observe that Eˉdip\bar E_\mathrm{dip} scales as EˉdipCα\bar E_\mathrm{dip}\propto C^{\alpha^*} with an unusually small exponent α0.8\alpha^*\simeq 0.8--1.0 for coverages C20C\lesssim20%. This behavior is shown to be primarly given by the contributions of particle pairs at short distances, which is intrinsically related to the presence of an appreciable degree of disorder. The value of α\alpha^* is found to be sensitive to the magnetic arrangement within the nanostructure and to the degree of disorder. For large coverages C20C\gtrsim20% we obtain EˉdipCα\bar E_\mathrm{dip}\propto C^\alpha with α=3/2\alpha=3/2, in agreement with the straighforward scaling of the dipole coupling as in a periodic particle setup. Taking into account the effect of single-particle anisotropies, we show that the scaling exponent can be used as a criterion to distinguish between weakly interacting (α1.0\alpha^* \simeq 1.0) and strongly interacting (α0.8\alpha^* \simeq 0.8) particle ensembles as function of coverage.Comment: accepted for publication in Phys.Rev.

    Clustering transitions in vibro-fluidized magnetized granular materials

    Full text link
    We study the effects of long range interactions on the phases observed in cohesive granular materials. At high vibration amplitudes, a gas of magnetized particles is observed with velocity distributions similar to non-magnetized particles. Below a transition temperature compact clusters are observed to form and coexist with single particles. The cluster growth rate is consistent with a classical nucleation process. However, the temperature of the particles in the clusters is significantly lower than the surrounding gas, indicating a breakdown of equipartition. If the system is quenched to low temperatures, a meta-stable network of connected chains self-assemble due to the anisotropic nature of magnetic interactions between particles.Comment: 4 pages, 5 figure

    Magnetic Coupling between 3He and 19F at Low Temperatures

    Get PDF
    Measurements of relaxation phenomena between liquid 3He and 19F nuclei in small fluorocarbon particles are reported. Magnetic cross relaxation between the 19F in the substrate and the liquid is observed in measurements between 1 K and 0.6 mK. The spin temperatures remain strongly coupled in magnetic fields up to 125 mT. Moreover it is observed that there is a decrease in magnetic relaxation time at the onset of superfluidity in the liquid 3He and that the thermal relaxation times are remarkably short at all temperatures

    Phase Separation and the Low-Field Bulk Magnetic Properties of Pr0.7Ca0.3MnO3

    Full text link
    We present a detailed magnetic study of the perovskite manganite Pr0.7Ca0.3MnO3 at low temperatures including magnetization and a.c. susceptibility measurements. The data appear to exclude a conventional spin glass phase at low fields, suggesting instead the presence of correlated ferromagnetic clusters embedded in a charge-ordered matrix. We examine the growth of the ferromagnetic clusters with increasing magnetic field as they expand to occupy almost the entire sample at H ~ 0.5 T. Since this is well below the field required to induce a metallic state, our results point to the existence of a field-induced ferromagnetic insulating state in this material.Comment: 15 pages with figures, submitted to Physical Review
    corecore