17 research outputs found

    An Efficient Method for the Surface Functionalization of Luminescent Quantum Dots with Lipoic Acid Based Ligands

    Get PDF
    We describe herein an operationally advantageous general methodology for efficiently activating lipoic acid based compounds, a family of popular surface ligands for semiconductor nanocrystals, through the use of a borohydride exchange resin, and the use of the activated species to replace the native surface ligands of quantum dots. The procedure enabled phase transfer of the nanocrystals between polar and aqueous media and, if unsubstituted lipoic acid was used, a facile adjustment of their solubility in a wide range of solvents with varying polarity (from hexane to water). We show that the protocol is applicable to different types of nanocrystals and a variety of lipoic acid based ligands, and that the resulting quantum dots maintain their optical properties, in particular, an intense luminescence, and long-term colloidal stability

    An efficient method for the surface functionalization of luminescent quantum dots with lipoic acid-based ligands

    Get PDF
    We describe an operationally advantageous general methodology to efficiently activate lipoic acid-based compounds - a family of popular surface ligands for semiconductor nanocrystals - by the use of a borohydride exchange resin, and the use of the activated species to replace the native surface ligands of quantum dots. The procedure enables the phase transfer of the nanocrystals between polar and aqueous media and, if unsubstituted lipoic acid is used, a facile adjustment of their solubility in a wide range of solvents with varying polarity (from hexane to water). We show that the protocol is applicable to different types of nanocrystals and a variety of lipoic acid-based ligands, and that the resulting quantum dots maintain their optical properties - in particular, an intense luminescence - and long term colloidal stability

    Two-stage directed self-assembly of a cyclic [3]catenane.

    Get PDF
    Interlocked molecules possess properties and functions that depend upon their intricate connectivity. In addition to the topologically trivial rotaxanes, whose structures may be captured by a planar graph, the topologically non-trivial knots and catenanes represent some of chemistry's most challenging synthetic targets because of the three-dimensional assembly necessary for their construction. Here we report the synthesis of a cyclic [3]catenane, which consists of three mutually interpenetrating rings, via an unusual synthetic route. Five distinct building blocks self-assemble into a heteroleptic triangular framework composed of two joined Fe(II)3L3 circular helicates. Subcomponent exchange then enables specific points in the framework to be linked together to generate the cyclic [3]catenane product. Our method represents an advance both in the intricacy of the metal-templated self-assembly procedure and in the use of selective imine exchange to generate a topologically complex product.This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) and a Marie Curie fellowship for J.J.H. (ITN-2010–264645). The authors thank the Diamond Light Source (UK) for synchrotron beamtime on I19 (MT7984 and MT8464).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.220

    Appearance of dark neurons following anodal polarization in the rat brain.

    Get PDF
    An anodal direct current of 3.0 microA or 30.0 microA was unilaterally applied for 30 min or 3 h to the surface of the sensorimotor cortex of rats, and the effects of polarization on the morphology of brain cells were examined by light microscopy. After five repeated anodal polarization trials, dark neurons appeared mainly in the polarized neocortex regardless of the intensity and duration of the polarizing currents. Such dark neurons were scarce in the control animals or the animals receiving only one trial of polarization. The dark neurons were most abundant in the second to fourth layers of the ipsilateral superior-lateral convexity of the frontal cortex, but a few were present in the contralateral cortex. The dark neurons began to appear 24 h after the last polarization; thereafter almost all of these neurons gradually reverted to their normal morphological profiles through a transitory state within 1 month of the last trial of repeated polarization. No morphological changes were apparent in any of the brain structures other than the cerebral cortex. These findings indicate that repeated anodal polarization has reversible morphological effects on the cortical neurons, suggesting that the appearance of dark neurons after anodal polarization is an important index for evaluation of cortical plastic change induced by polarization.</p

    Method for controlling solubility of quantum dots

    No full text
    The present invention refers to the field of luminescent semiconductor nanocrystals (quantum dots). In particular, the present invention relates to quantum dots (QD) functionalized with ligands bearing a dithiolane group and an acid group salified with countercations, said QDs being able to solubilize in water and other polar solvents. The invention also relates to a method for the manufacturing of said quantum dots and to their possible uses and applications in biological, medical and other technical fields

    Modulation of the solubility of luminescent semiconductor nanocrystals through facile surface functionalization

    Get PDF
    The solubility of luminescent quantum dots in solvents from hexane to water can be finely tuned by the choice of the countercations associated with carboxylate residues present on the nanocrystal surface. The resulting nanocrystals exhibit long term colloidal and chemical stability and maintain their photophysical properties

    Modulation of the solubility of luminescent semiconductor nanocrystals through facile surface functionalization

    No full text
    The solubility of luminescent quantum dots in solvents from hexane to water can be finely tuned by the choice of the countercations associated with carboxylate residues present on the nanocrystal surface. The resulting nanocrystals exhibit long term colloidal and chemical stability and maintain their photophysical properties. This journal is © the Partner Organisations 2014
    corecore