2,382 research outputs found
Local states of free bose fields
These notes contain an extended version of lectures given at the ``Summer
School on Large Coulomb Systems'' in Nordfjordeid, Norway, in august 2003. They
furnish a short introduction to the theory of quantum harmonic systems, or free
bose fields. The main issue addressed is the one of local states. I will adopt
the definition of Knight of ``strictly local excitation of the vacuum'' and
will then state and prove a generalization of Knight's Theorem which asserts
that finite particle states cannot be perfectly localized. It will furthermore
be explained how Knight's a priori counterintuitive result can be readily
understood if one remembers the analogy between finite and infinite dimensional
harmonic systems alluded to above. I will also discuss the link between the
above result and the so-called Newton-Wigner position operator thereby
illuminating, I believe, the difficulties associated with the latter. I will in
particular argue that those difficulties do not find their origin in special
relativity or in any form of causality violation, as is usually claimed
Switching of +/-360deg domain wall states in a nanoring by an azimuthal Oersted field
We demonstrate magnetic switching between two domain wall vortex
states in cobalt nanorings, which are candidate magnetic states for robust and
low power MRAM devices. These domain wall (DW) or "twisted onion"
states can have clockwise or counterclockwise circulation, the two states for
data storage. Reliable switching between the states is necessary for any
realistic device. We accomplish this switching by applying a circular Oersted
field created by passing current through a metal atomic force microscope tip
placed at the center of the ring. After initializing in an onion state, we
rotate the DWs to one side of the ring by passing a current through the center,
and can switch between the two twisted states by reversing the current, causing
the DWs to split and meet again on the opposite side of the ring. A larger
current will annihilate the DWs and create a perfect vortex state in the rings.Comment: 5 pages, 5 figure
Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency
Atypical hemolytic uremic syndrome (aHUS) is a severe renal disease that is associated with defective complement regulation caused by multiple factors. We previously described the deficiency of factor H-related proteins CFHR1 and CFHR3 as predisposing factor for aHUS. Here we identify in an extended cohort of 147 aHUS patients that 16 juvenile individuals (ie, 11%) who either lacked the CFHR1/CFHR3 completely (n = 14) or showed extremely low CFHR1/CFHR3 plasma levels (n = 2) are positive for factor H (CFH) autoantibodies. The binding epitopes of all 16 analyzed autoantibodies were localized to the C-terminal recognition region of factor H, which represents a hot spot for aHUS mutations. Thus we define a novel subgroup of aHUS, termed DEAP HUS (deficiency of CFHR proteins and CFH autoantibody positive) that is characterized by a combination of genetic and acquired factors. Screening for both factors is obviously relevant for HUS patients as reduction of CFH autoantibody levels represents a therapeutic option
Imperfect Imitation Can Enhance Cooperation
The promotion of cooperation on spatial lattices is an important issue in
evolutionary game theory. This effect clearly depends on the update rule: it
diminishes with stochastic imitative rules whereas it increases with
unconditional imitation. To study the transition between both regimes, we
propose a new evolutionary rule, which stochastically combines unconditional
imitation with another imitative rule. We find that, surprinsingly, in many
social dilemmas this rule yields higher cooperative levels than any of the two
original ones. This nontrivial effect occurs because the basic rules induce a
separation of timescales in the microscopic processes at cluster interfaces.
The result is robust in the space of 2x2 symmetric games, on regular lattices
and on scale-free networks.Comment: 4 pages, 4 figure
Recommended from our members
The invisible fish: hydrodynamic constraints for predator-prey interaction in fossil fish Saurichthys compared to recent actinopterygians
Recent pike-like predatory fishes attack prey animals by a quick strike out of rest or slow movement. This fast-start behaviour includes a preparatory, a propulsive and a final phase, and the latter is crucial for the success of the attack. To prevent prey from escape, predators tend to minimise the duration of the interaction and the disturbance caused to surrounding water in order to not be detected by the prey's lateral line sensory system. We compared the hydrodynamic properties of the earliest fossil representative of the pike-like morphotype, the Triassic actinopterygian Saurichthys, with several recent pike-like predators by means of computational fluid dynamics (CFD). Rainbow trout has been used as a control example of a fish with a generalist body shape. Our results show that flow disturbance produced by Saurichthys was low and similar to that of the recent forms Belone and Lepisosteus, thus indicative of an effective ambush predator. Drag coefficients are low for all these fishes, but also for trout, which is a good swimmer over longer distances but generates considerable disturbance of flow. Second-highest flow disturbance values are calculated for Esox, which compensates the large disturbance with its extremely high acceleration performance (i.e. attacks at high speeds) and the derived teleostean protrusible mouth that allows prey catching from longer distances compared to the other fishes. We show CFD modelling to be a useful tool for palaeobiological reconstruction of fossil fishes, as it allows quantification of impacts of body morphology on a hypothesised lifestyle
Recommended from our members
Communication between receptors for different ligands on a single cell...
Receptors for the third component of complement (C3) on cultured human monocytes (MO) bind ligand-coated particles but do not initiate phagocytosis. The function of these receptors, however, is altered dramatically after MO attach to surfaces coated with fibronectin (FN) or after MO are exposed to phorbol esters. FN and phorbol esters "activate" C3 receptors such that they promote vigorous phagocytosis. Here we show that activation of C3 receptors requires the continuous presence of FN or phorbol esters and is rapidly reversible when these stimuli are removed. Activation does not change the number or distribution of C3 receptors on the surface of MO. We conclude that the function of C3 receptors is regulated by reversible reactions that are initiated by ligation of a different class of receptors on the surface of the same cell
Model Systems of Human Intestinal Flora, to Set Acceptable Daily Intakes of Antimicrobial Residues
The veterinary use of antimicrobial drugs in food producing animals may result in residues in food, that might modify the consumer gut flora. This review compares three model systems that maintain a complex flora of human origin: (i) human flora associated (HFA) continuous flow cultures in chemostats, (ii) HFA mice, and (iii) human volunteers. The "No Microbial Effect Level" of an antibiotic on human flora, measured in one of these models, is used to set the accept¬able daily intake (ADI) for human consumers. Human volunteers trials are most relevant to set microbio¬log¬ical ADI, and may be considered as the "gold standard". However, human trials are very expensive and unethical. HFA chemostats are controlled systems, but tetracycline ADI calculated from a chemostat study is far above result of a human study. HFA mice studies are less expensive and better controlled than human trials. The tetracycline ADI derived from HFA mice studies is close to the ADI directly obtained in human volunteers
Identification of a Locus on the X Chromosome Linked to Familial Membranous Nephropathy
Puntuació de risc genètic; Glomerulonefritis; Nefropatia membranosaPuntuación de riesgo genético; Glomerulonefritis; Nefropatía membranosaGenetic risk score; Glomerulonephritis; Membranous nephropathyIntroduction
Membranous nephropathy (MN) is the most common cause of nephrotic syndrome (NS) in adults and is a leading cause of end-stage renal disease due to glomerulonephritis. Primary MN has a strong male predominance, accounting for approximately 65% of cases; yet, currently associated genetic loci are all located on autosomes. Previous reports of familial MN have suggested the existence of a potential X-linked susceptibility locus. Identification of such risk locus may provide clues to the etiology of MN.
Methods
We identified 3 families with 8 members affected by primary MN. Genotyping was performed using single-nucleotide polymorphism microarrays, and serum was sent for anti-phospholipase A2 receptor (PLA2R) antibody testing. All affected members were male and connected through the maternal line, consistent with X-linked inheritance. Genome-wide multipoint parametric linkage analysis using a model of X-linked recessive inheritance was conducted, and genetic risk scores (GRSs) based on known MN-associated variants were determined.
Results
Anti-PLA2R testing was negative in all affected family members. Linkage analysis revealed a significant logarithm of the odds score (3.260) on the short arm of the X chromosome at a locus of approximately 11 megabases (Mb). Haplotype reconstruction further uncovered a shared haplotype spanning 2 Mb present in all affected individuals from the 3 families. GRSs in familial MN were significantly lower than in anti-PLA2R–associated MN and were not different from controls.
Conclusions
Our study identifies linkage of familial membranous nephropathy to chromosome Xp11.3-11.22. Family members affected with MN have a significantly lower GRS than individuals with anti-PLA2R–associated MN, suggesting that X-linked familial MN represents a separate etiologic entity
- …