104 research outputs found

    The High-Superior-Tension Technique: Evolution of Lipoabdominoplasty

    Get PDF
    Because abdominoplasty is associated with complications such as seroma and necrosis as well as epigastric bulging and a suprapubic scar located too high, the demand for this procedure is not as high as it otherwise might be. However, although these negative effects were common many years ago, their incidence has decreased dramatically with modern abdominoplastic techniques. One approach using a combination of abdominoplasty and liposuction or lipoabdominoplasty has resolved many of the problems faced with earlier techniques, offering aesthetically pleasing results and excellent reliability. The keys to successful lipoabdominoplasty, first developed as the high-superior-tension technique, are extensive liposuction, preservation of lymphatic trunks, preaponeurotic epigastric dissection, major muscle fascia plication, two high-tension paraumbilical sutures, hypogastric tension sutures, and closure of the dead spaces. The most recent updates to this technique are described in this article

    Prism matching for piston segmentation correction with adaptive optics systems on extremely large telescopes

    Get PDF
    Images observed at ground-based telescopes are blurred by Earth’s atmosphere. Adaptive optics systems can correct for this blurring by using a wavefront sensor to measure the instantaneous wavefront aberration created by the atmosphere, and a deformable mirror to apply correction to the aberrated wavefront. The European Extremely Large Telescope, one of the next generation of telescopes currently under construction, will have large supporting struts or arms (spiders) for the secondary mirror that obscure whole rows and columns of subapertures in the wavefront sensor. This phase discontinuity can allow large segment piston errors to arise between neighbouring segments, because the deformable mirror can produce the segment modes but the wavefront sensor senses them poorly. The spider for the EELT will have six arms, and we propose in this paper employing a six-sided prism for the wavefront sensor instead of the traditional four sided pyramid. We show that when the diffraction spikes from the spider arms are aligned in the middle of the prism faces, the sensitivty of the sensor, as measured by the sum of the singular values of the interaction matrix for the six segment piston modes, is 15% larger than if the diffraction spikes are aligned with the prism edges

    Ground-layer wavefront reconstruction from multiple natural guide stars

    Get PDF
    Observational tests of ground layer wavefront recovery have been made in open loop using a constellation of four natural guide stars at the 1.55 m Kuiper telescope in Arizona. Such tests explore the effectiveness of wide-field seeing improvement by correction of low-lying atmospheric turbulence with ground-layer adaptive optics (GLAO). The wavefronts from the four stars were measured simultaneously on a Shack-Hartmann wavefront sensor (WFS). The WFS placed a 5 x 5 array of square subapertures across the pupil of the telescope, allowing for wavefront reconstruction up to the fifth radial Zernike order. We find that the wavefront aberration in each star can be roughly halved by subtracting the average of the wavefronts from the other three stars. Wavefront correction on this basis leads to a reduction in width of the seeing-limited stellar image by up to a factor of 3, with image sharpening effective from the visible to near infrared wavelengths over a field of at least 2 arc minutes. We conclude that GLAO correction will be a valuable tool that can increase resolution and spectrographic throughput across a broad range of seeing-limited observations.Comment: 25 pages, 8 figures, to be published in Astrophys.

    Properties of Saturn Kilometric Radiation measured within its source region

    Get PDF
    On 17 October 2008, the Cassini spacecraft crossed the southern sources of Saturn kilometric radiation (SKR), while flying along high-latitude nightside magnetic field lines. In situ measurements allowed us to characterize for the first time the source region of an extra-terrestrial auroral radio emission. Using radio, magnetic field and particle observations, we show that SKR sources are surrounded by a hot tenuous plasma, in a region of upward field-aligned currents. Magnetic field lines supporting radio sources map a continuous, high-latitude and spiral-shaped auroral oval observed on the dawnside, consistent with enhanced auroral activity. Investigating the Cyclotron Maser Instability (CMI) as a mechanism responsible for SKR generation, we find that observed cutoff frequencies are consistent with radio waves amplified perpendicular to the magnetic field by hot (6 to 9 keV) resonant electrons, measured locally

    Characterizing the Adaptive Optics Off-Axis Point-Spread Function - I: A Semi-Empirical Method for Use in Natural-Guide-Star Observations

    Full text link
    Even though the technology of adaptive optics (AO) is rapidly maturing, calibration of the resulting images remains a major challenge. The AO point-spread function (PSF) changes quickly both in time and position on the sky. In a typical observation the star used for guiding will be separated from the scientific target by 10" to 30". This is sufficient separation to render images of the guide star by themselves nearly useless in characterizing the PSF at the off-axis target position. A semi-empirical technique is described that improves the determination of the AO off-axis PSF. The method uses calibration images of dense star fields to determine the change in PSF with field position. It then uses this information to correct contemporaneous images of the guide star to produce a PSF that is more accurate for both the target position and the time of a scientific observation. We report on tests of the method using natural-guide-star AO systems on the Canada-France-Hawaii Telescope and Lick Observatory Shane Telescope, augmented by simple atmospheric computer simulations. At 25" off-axis, predicting the PSF full width at half maximum using only information about the guide star results in an error of 60%. Using an image of a dense star field lowers this error to 33%, and our method, which also folds in information about the on-axis PSF, further decreases the error to 19%.Comment: 29 pages, 9 figures, accepted for publication in the PAS

    New Insight into the Colonization Processes of Common Voles: Inferences from Molecular and Fossil Evidence

    Get PDF
    Elucidating the colonization processes associated with Quaternary climatic cycles is important in order to understand the distribution of biodiversity and the evolutionary potential of temperate plant and animal species. In Europe, general evolutionary scenarios have been defined from genetic evidence. Recently, these scenarios have been challenged with genetic as well as fossil data. The origins of the modern distributions of most temperate plant and animal species could predate the Last Glacial Maximum. The glacial survival of such populations may have occurred in either southern (Mediterranean regions) and/or northern (Carpathians) refugia. Here, a phylogeographic analysis of a widespread European small mammal (Microtus arvalis) is conducted with a multidisciplinary approach. Genetic, fossil and ecological traits are used to assess the evolutionary history of this vole. Regardless of whether the European distribution of the five previously identified evolutionary lineages is corroborated, this combined analysis brings to light several colonization processes of M. arvalis. The species' dispersal was relatively gradual with glacial survival in small favourable habitats in Western Europe (from Germany to Spain) while in the rest of Europe, because of periglacial conditions, dispersal was less regular with bottleneck events followed by postglacial expansions. Our study demonstrates that the evolutionary history of European temperate small mammals is indeed much more complex than previously suggested. Species can experience heterogeneous evolutionary histories over their geographic range. Multidisciplinary approaches should therefore be preferentially chosen in prospective studies, the better to understand the impact of climatic change on past and present biodiversity
    corecore