60 research outputs found

    Glutathione Restores the Mechanism of Synaptic Plasticity in Aged Mice to That of the Adult

    Get PDF
    Glutathione (GSH), the major endogenous antioxidant produced by cells, can modulate the activity of N-methyl-D-aspartate receptors (NMDARs) through its reducing functions. During aging, an increase in oxidative stress leads to decreased levels of GSH in the brain. Concurrently, aging is characterized by calcium dysregulation, thought to underlie impairments in hippocampal NMDAR-dependent long-term potentiation (LTP), a form of synaptic plasticity thought to represent a cellular model for memory

    Electrosynthesis of CdS/MoS2 Using Electrodeposited MoSx: A Combined Voltammetry–Electrochemical Quartz Crystal Nanogravimetry Study

    No full text
    Here, we describe a strategy for preparing CdS/MoS2 heterostructures using initially electrodeposited MoSx on a polycrystalline gold substrate. The excess sulfur intrinsic to the electrodeposited MoS3 surface was derivatized with Cd to form spherical CdS/MoS2 particles by judicious adjustment of the medium pH and interfacial electrochemistry. The progression of this conversion was monitored by a combination of cyclic/linear sweep voltammetry coupled with electrochemical quartz crystal nanogravimetry. The electrodeposited MoSx and CdS/MoS2 films were further characterized by scanning electron microscopy, energy-dispersive X-ray analysis, laser Raman spectroscopy, and X-ray photoelectron spectroscopy. Heterojunction formation between MoS2 and CdS particles was confirmed by high-resolution transmission electron microscopy as well as via Kelvin probe measurements of the contact potential differences, with and without the presence of CdS on the MoS2 surface. The nonoptimized CdS/MoS2 heterostructures showed improved photoelectrochemical response compared with CdS or MoS2 for oxidation of sulfite species
    • …
    corecore