3,420 research outputs found
Heimische Drosophila Parasitoide für die natürliche Regulierung der Kirschessigfliege, Drosophila suzukii M., einem invasiven Schaderreger im ökologischen Obstanbau
The invasive fruit pest Drosophila suzukii from Asia currently spreads in Germany
without being regulated by adapted specific natural enemies. Due to its polyphagous
nature, D. suzukii causes high risk in various soft fruit crops, especially since weather
and wild host plants provide suitable conditions for population outbreaks. Ongoing
research aims to identify native parasitoids of Drosophilidae in Germany and tries to
assess their ability for natural control as well as their suitability for being used as
biological control agents in pest management of D. suzukii
Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification
The antennal lobe plays a central role for odor processing in insects, as demonstrated by electrophysiological and imaging experiments. Here we analyze the detailed temporal evolution of glomerular activity patterns in the antennal lobe of honeybees. We represent these spatiotemporal patterns as trajectories in a multidimensional space, where each dimension accounts for the activity of one glomerulus. Our data show that the trajectories reach odor-specific steady states (attractors) that correspond to stable activity patterns at about 1 second after stimulus onset. As revealed by a detailed mathematical investigation, the trajectories are characterized by different phases: response onset, steady-state plateau, response offset, and periods of spontaneous activity. An analysis based on support-vector machines quantifies the odor specificity of the attractors and the optimal time needed for odor discrimination. The results support the hypothesis of a spatial olfactory code in the antennal lobe and suggest a perceptron-like readout mechanism that is biologically implemented in a downstream network, such as the mushroom body
Exciton Regeneration at Polymeric Semiconductor Heterojunctions
Control of the band-edge offsets at heterojunctions between organic
semiconductors allows efficient operation of either photovoltaic or
light-emitting diodes. We investigate systems where the exciton is marginally
stable against charge separation, and show via E-field-dependent time-resolved
photoluminescence spectroscopy that excitons that have undergone charge
separation at a heterojunction can be efficiently regenerated. This is because
the charge transfer produces a geminate electron-hole pair (separation
2.2-3.1nm) which may collapse into an exciplex and then endothermically
(E=100-200meV) back-transfer towards the exciton.Comment: 10 pages, 4 figures. Manuscript in press in Phys. Rev. Let
Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli
Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems
Simultaneous current-, force- and work function measurement with atomic resolution
The local work function of a surface determines the spatial decay of the
charge density at the Fermi level normal to the surface. Here, we present a
method that enables simultaneous measurements of local work function and
tip-sample forces. A combined dynamic scanning tunneling microscope and atomic
force microscope is used to measure the tunneling current between an
oscillating tip and the sample in real time as a function of the cantilever's
deflection. Atomically resolved work function measurements on a silicon
(111)-() surface are presented and related to concurrently recorded
tunneling current- and force- measurements.Comment: 8 pages, 4 figures, submitted to Applied Physics Letter
Statistical mechanics of temporal association in neural networks with transmission delays
We study the representation of static patterns and temporal sequences in neural networks with signal delays and a stochastic parallel dynamics. For a wide class of delay distributions, the asymptotic network behavior can be described by a generalized Gibbs distribution, generated by a novel Lyapunov functional for the determination dynamics. We extend techniques of equilibrium statistical mechanics so as to deal with time-dependent phenomena, derive analytic results for both retrieval quality and storage capacity, and compare them with numerical simulations
Measuring the equation of state of a hard-disc fluid
We use video microscopy to study a two-dimensional (2D) model fluid of
charged colloidal particles suspended in water and compute the pressure from
the measured particle configurations. Direct experimental control over the
particle density by means of optical tweezers allows the precise measurement of
pressure as a function of density. We compare our data with theoretical
predictions for the equation of state, the pair-correlation function and the
compressibility of a hard-disc fluid and find good agreement, both for the
fluid and the solid phase. In particular the location of the transition point
agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio
Collection of relevant results obtained with the Skylab images by the Institute for Space Research, INPE
There are no author-identified significant results in this report
Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers
We present femtosecond transient absorption measurements on -conjugated
supramolecular assemblies in a high pump fluence regime.
Oligo(\emph{p}-phenylenevinylene) monofunctionalized with
ureido-\emph{s}-triazine (MOPV) self-assembles into chiral stacks in dodecane
solution below 75C at a concentration of M. We
observe exciton bimolecular annihilation in MOPV stacks at high excitation
fluence, indicated by the fluence-dependent decay of B-exciton
spectral signatures, and by the sub-linear fluence dependence of time- and
wavelength-integrated photoluminescence (PL) intensity. These two
characteristics are much less pronounced in MOPV solution where the phase
equilibrium is shifted significantly away from supramolecular assembly,
slightly below the transition temperature. A mesoscopic rate-equation model is
applied to extract the bimolecular annihilation rate constant from the
excitation fluence dependence of transient absorption and PL signals. The
results demonstrate that the bimolecular annihilation rate is very high with a
square-root dependence in time. The exciton annihilation results from a
combination of fast exciton diffusion and resonance energy transfer. The
supramolecular nanostructures studied here have electronic properties that are
intermediate between molecular aggregates and polymeric semiconductors
- …