3,420 research outputs found

    Heimische Drosophila Parasitoide für die natürliche Regulierung der Kirschessigfliege, Drosophila suzukii M., einem invasiven Schaderreger im ökologischen Obstanbau

    Get PDF
    The invasive fruit pest Drosophila suzukii from Asia currently spreads in Germany without being regulated by adapted specific natural enemies. Due to its polyphagous nature, D. suzukii causes high risk in various soft fruit crops, especially since weather and wild host plants provide suitable conditions for population outbreaks. Ongoing research aims to identify native parasitoids of Drosophilidae in Germany and tries to assess their ability for natural control as well as their suitability for being used as biological control agents in pest management of D. suzukii

    Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification

    Get PDF
    The antennal lobe plays a central role for odor processing in insects, as demonstrated by electrophysiological and imaging experiments. Here we analyze the detailed temporal evolution of glomerular activity patterns in the antennal lobe of honeybees. We represent these spatiotemporal patterns as trajectories in a multidimensional space, where each dimension accounts for the activity of one glomerulus. Our data show that the trajectories reach odor-specific steady states (attractors) that correspond to stable activity patterns at about 1 second after stimulus onset. As revealed by a detailed mathematical investigation, the trajectories are characterized by different phases: response onset, steady-state plateau, response offset, and periods of spontaneous activity. An analysis based on support-vector machines quantifies the odor specificity of the attractors and the optimal time needed for odor discrimination. The results support the hypothesis of a spatial olfactory code in the antennal lobe and suggest a perceptron-like readout mechanism that is biologically implemented in a downstream network, such as the mushroom body

    Exciton Regeneration at Polymeric Semiconductor Heterojunctions

    Full text link
    Control of the band-edge offsets at heterojunctions between organic semiconductors allows efficient operation of either photovoltaic or light-emitting diodes. We investigate systems where the exciton is marginally stable against charge separation, and show via E-field-dependent time-resolved photoluminescence spectroscopy that excitons that have undergone charge separation at a heterojunction can be efficiently regenerated. This is because the charge transfer produces a geminate electron-hole pair (separation 2.2-3.1nm) which may collapse into an exciplex and then endothermically (E=100-200meV) back-transfer towards the exciton.Comment: 10 pages, 4 figures. Manuscript in press in Phys. Rev. Let

    Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli

    Get PDF
    Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems

    Simultaneous current-, force- and work function measurement with atomic resolution

    Get PDF
    The local work function of a surface determines the spatial decay of the charge density at the Fermi level normal to the surface. Here, we present a method that enables simultaneous measurements of local work function and tip-sample forces. A combined dynamic scanning tunneling microscope and atomic force microscope is used to measure the tunneling current between an oscillating tip and the sample in real time as a function of the cantilever's deflection. Atomically resolved work function measurements on a silicon (111)-(7×77\times 7) surface are presented and related to concurrently recorded tunneling current- and force- measurements.Comment: 8 pages, 4 figures, submitted to Applied Physics Letter

    Statistical mechanics of temporal association in neural networks with transmission delays

    Get PDF
    We study the representation of static patterns and temporal sequences in neural networks with signal delays and a stochastic parallel dynamics. For a wide class of delay distributions, the asymptotic network behavior can be described by a generalized Gibbs distribution, generated by a novel Lyapunov functional for the determination dynamics. We extend techniques of equilibrium statistical mechanics so as to deal with time-dependent phenomena, derive analytic results for both retrieval quality and storage capacity, and compare them with numerical simulations

    Measuring the equation of state of a hard-disc fluid

    Full text link
    We use video microscopy to study a two-dimensional (2D) model fluid of charged colloidal particles suspended in water and compute the pressure from the measured particle configurations. Direct experimental control over the particle density by means of optical tweezers allows the precise measurement of pressure as a function of density. We compare our data with theoretical predictions for the equation of state, the pair-correlation function and the compressibility of a hard-disc fluid and find good agreement, both for the fluid and the solid phase. In particular the location of the transition point agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio

    Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers

    Get PDF
    We present femtosecond transient absorption measurements on π\pi-conjugated supramolecular assemblies in a high pump fluence regime. Oligo(\emph{p}-phenylenevinylene) monofunctionalized with ureido-\emph{s}-triazine (MOPV) self-assembles into chiral stacks in dodecane solution below 75^{\circ}C at a concentration of 4×1044\times 10^{-4} M. We observe exciton bimolecular annihilation in MOPV stacks at high excitation fluence, indicated by the fluence-dependent decay of 111^1Bu_{u}-exciton spectral signatures, and by the sub-linear fluence dependence of time- and wavelength-integrated photoluminescence (PL) intensity. These two characteristics are much less pronounced in MOPV solution where the phase equilibrium is shifted significantly away from supramolecular assembly, slightly below the transition temperature. A mesoscopic rate-equation model is applied to extract the bimolecular annihilation rate constant from the excitation fluence dependence of transient absorption and PL signals. The results demonstrate that the bimolecular annihilation rate is very high with a square-root dependence in time. The exciton annihilation results from a combination of fast exciton diffusion and resonance energy transfer. The supramolecular nanostructures studied here have electronic properties that are intermediate between molecular aggregates and polymeric semiconductors
    corecore