879 research outputs found

    Correlated versus Uncorrelated Stripe Pinning: the Roles of Nd and Zn Co-Doping

    Full text link
    We investigate the stripe pinning produced by Nd and Zn co-dopants in cuprates via a renormalization group approach. The two dopants play fundamentally different roles in the pinning process. While Nd induces a correlated pinning potential that traps the stripes in a flat phase and suppresses fluctuations, Zn pins the stripes in a disordered manner and promotes line meandering. We obtain the zero temperature phase diagram and compare our results with neutron scattering data. A good agreement is found between theory and experiment.Comment: To appear at the proceedings of the LLD2K Conference Tsukuba, July 2000, Japan. 4 pages, 2 figure

    An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra

    Get PDF
    An earlier algorithm for retrieving two-dimensional wave spectra from synthetic aperture radar (SAR) image spectra is improved by using a modified cost function and introducing an additional iteration loop in which the first-guess input spectrum is systematically updated. For this purpose a spectral partitioning scheme is applied in which the spectrum is decomposed into a finite number of distinct wave systems. At each iteration step, the individual wave systems of the partitioned nth-guess wave spectrum are adjusted to agree in mean energy, frequency, and direction with the corresponding mean values of the associated wave systems of the SAR-inverted wave spectrum. The algorithm retrieves smooth wave spectra, avoiding the discontinuities which tended to arise in the previous algorithm in the transition region near the azimuthal wavenumber cutoff of the SAR image spectrum. The azimuthal cutoff of the SAR spectrum is also reproduced more accurately. The greatest improvement of the new retrieval algorithm is obtained when the discrepancies between the initial first-guess wave spectrum and the observed SAR spectrum are large. In this case the additional updating loop for the input spectrum enables the retrieved spectrum to adjust such that the simulated SAR spectrum matches more closely the observed SAR spectrum. The overall correlation of a large set of simulated SAR spectra with the measured SAR spectra is found to be significantly higher than with the previous algorithm, indicating that the algorithm not only overcomes isolated shortcomings of the earlier algorithm but also yields retrieved wave spectra which are generally more consistent with the input SAR data. An additional practical advantage of the new algorithm is that it returns spectral partioning parameters which dan be used in SAR wave data assimilation schemes

    Stochastic climate models - 2. Application to sea-surface temperature anomalies and thermocline variability

    Get PDF
    The concept of stochastic climate models developed in Part I of this series (Hasselmann, 1976) is applied to the investigation of the low frequency variability of the upper ocean. It is shown that large-scale, long-time sea surface temperature (SST) anomalies may be explained naturally as the response of the oceanic surface layers to short-time-scale atmospheric forcing. The white-noise spectrum of the atmospheric input produces a red response spectrum, with most of the variance concentrated in very long periods. Without stabilizing negative feedback, the oceanic response would be nonstationary, the total SST variance growing indefinitely with time. With negative feedback, the response is asymptotically stationary. These effects are illustrated through numerical experiments with a very simple ocean-atmosphere model. The model reproduces the principal features and orders of magnitude of the observed SST anomalies in mid-latitudes. Independent support of the stochastic forcing model is provided by direct comparisons of observed sensible and latent heat flux spectra with SST anomaly spectra, and also by the structure of the cross correlation functions of atmospheric surface pressure and SST anomaly patterns. The numerical model is further used to simulate anomalies in the near-surface thermocline through Ekman pumping driven by the curl of the wind stress. The results suggest that short-time-scale atmospheric forcing should be regarded as a possible candidate for the origin of large-scale, low-period variability in the seasonal thermoclin

    Stripe dynamics in presence of disorder and lattice potentials

    Full text link
    We study the influence of disorder and lattice pinning on the dynamics of a charged stripe. Starting from a phenomenological model of a discrete quantum string, we determine the phase diagram for this system. Three regimes are identified, the free phase, the flat phase pinned by the lattice, and the disorder pinned phase. In the absence of impurities, the system can be mapped onto a 1D array of Josephson junctions. The results are compared with measurements on nickelates and cuprates and a good qualitative agreement is found between our results and the experimental data.Comment: 4 pages, 2 figure
    • …
    corecore