88 research outputs found
Land use influences the diet of chacma baboons (Papio ursinus) in South Africa
DATA AVAILABILITY :
The sample data can be found in the supplementary file published alongside this article (Table A.1).Please read abstract in the article.Virginie Rougeron from the Centre National de la Recherche Scientifique, REHABS International Research Laboratory.https://www.elsevier.com/locate/geccohj2024Mammal Research InstituteSDG-15:Life on lan
Social Perceptions of Forest Ecosystem Services in the Democratic Republic of Congo
The forests of the Albertine Rift are known for their high biodiversity and the important ecosystem services they provide to millions of inhabitants. However, their conservation and the maintenance of ecosystem service delivery is a challenge, particularly in the Democratic Republic of the Congo. Our research investigates how livelihood strategy and ethnicity affects local perceptions of forest ecosystem services. We collected data through 25 focus-group discussions in villages from distinct ethnic groups, including farmers (Tembo, Shi, and Nyindu) and hunter-gatherers (Twa). Twa identify more food-provisioning services and rank bush meat and honey as the most important. They also show stronger place attachment to the forest than the farmers, who value other ecosystem services, but all rank microclimate regulation as the most important. Our findings help assess ecosystem services trade-offs, highlight the important impacts of restricted access to forests resources for Twa, and point to the need for developing alternative livelihood strategies for these communities
Sensitivity of RT-PCR method in samples shown to be positive for Zika virus by RT-qPCR in vector competence studies
Abstract Tissue samples from mosquitoes artificially infected with Zika virus and shown to be positive by RT-qPCR were reexamined by RT-PCR. Using these samples we compared the two methods employed in virus RNA detection for vector competence studies. Results demonstrated that, albeit useful, RT-PCR gave false negatives with low viral loads (< 106 RNA copies/ml)
Combining multi-scale socio-ecological approaches to understand the susceptibility of subsistence farmers to elephant crop raiding on the edge of a protected area
International audienc
Vector-borne transmission imposes a severe bottleneck on an RNA virus population.
RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via Muller's ratchet. To examine this potential challenge of bottlenecks for arbovirus perpetuation, we studied Venezuelan equine encephalitis virus (VEEV) enzootic subtype IE and its natural vector Culex (Melanoconion) taeniopus, as an example of a virus-vector interaction with a long evolutionary history. Using a mixture of marked VEEV clones to infect C. taeniopus and real-time RT-PCR to track these clones during mosquito infection and dissemination, we observed severe bottleneck events that resulted in a significant drop in the number of clones present. At higher initial doses, the midgut was readily infected and there was a severe bottleneck at the midgut escape. Following a lower initial dose, the major bottleneck occurred at initial midgut infection. A second, less severe bottleneck was identified at the salivary gland infection stage following intrathoracic inoculation. Our results suggest that VEEV consistently encounters bottlenecks during infection, dissemination and transmission by its natural enzootic vector. The potential impacts of these bottlenecks on viral fitness and transmission, and the viral mechanisms that prevent genetic drift leading to extinction, deserve further study
IRES-based Venezuelan equine encephalitis vaccine candidate elicits protective immunity in mice
Venezuelan equine encephalitis virus (VEEV) is an arbovirus that causes periodic outbreaks that impact equine and human populations in the Americas. One of the VEEV subtypes located in Mexico and Central America (IE) has recently been recognized as an important cause of equine disease and death, and human exposure also appears to be widespread. Here, we describe the use of an Internal Ribosome Entry Site (IRES) from encephalomyocarditis virus to stably attenuate VEEV, creating a vaccine candidate independent of unstable point mutations. Mice infected with this virus produced antibodies and were protected against lethal VEEV challenge. This IRES-based vaccine was unable to establish productive infection in mosquito cell cultures or in intrathoracically injected Aedes taeniorhynchus, demonstrating that it cannot be transmitted from a vaccinee. These attenuation, efficacy and safety results justify further development for humans or equids of this new VEEV vaccine candidate
Consequences of animals crossing the edges of transfrontier parks
International audienc
- …