7 research outputs found

    The establishment of a fungal consortium in a new winery

    No full text
    International audienceThe biodiversity and evolution of fungal communities were monitored over a period of 3 vintages in a new winery. Samples were collected before grape receipt and 3 months after fermentation from 3 different wine related environments (WRE): floor, walls and equipment and analyzed using Illumina Mi-Seq. Genera of mold and filamentous fungi (294), non-enological (10) and wine-associated yeasts (25) were detected on all WREs before the arrival of the first harvest. Among them, genera like Alternaria and Aureobasidium persisted during two vintages. Therefore, these genera are not specific to winery environment and appear to be adapted to natural or anthropic environments due to their ubiquitous character. Some genera like Candida were also detected before the first harvest but only on one WREs, whereas, on the other WREs they were found after the harvest. The ubiquitous character and phenotypic traits of these fungal genera can explain their dynamics. After the first harvest and during 3 vintages the initial consortium was enriched by oenological genera like Starmerella introduced either by harvest or by potential transfers between the different WREs. However, these establishing genera, including Saccharomyces, do not appear to persist due to their low adaptation to the stressful conditions of winery environment

    Ann. microbiol.

    No full text
    Purpose Brettanomyces bruxellensis is a serious source of concern for winemakers. The production of volatile phenols by the yeast species confers to wine unpleasant sensory characteristics which are unacceptable by the consumers and inevitably provoke economic loss for the wine industry. This ubiquitous yeast is able to adapt to all winemaking steps and to withstand various environmental conditions. Moreover, the ability of B. bruxellensis to adhere and colonize inert materials can be the cause of the yeast persistence in the cellars and thus recurrent wine spoilage. We therefore investigated the surface properties, biofilm formation capacity, and the factors which may affect the attachment of the yeast cells to surfaces with eight strains representative of the genetic diversity of the species.[br/] Methods The eight strains of B. bruxellensis were isolated from different geographical and industrial fermentation origins. The cells were grown in synthetic YPD medium containing 1% (w/v) yeast extract (Difco Laboratories, Detroit), 2% (w/v) bacto peptone (Difco), and 1% (w/v) glucose. Surface physicochemical properties as electrophoretic mobility and adhesion to hydrocarbon of the cells were studied. The ability of the strains to form biofilm was quantified using a colorimetric microtiter 96-well polystyrene plate. Biochemical characteristics were examined by colorimetric methods as well as by chemical analysis.[br/] Result Our results show that the biofilm formation ability is strain-dependent and suggest a possible link between the physicochemical properties of the studied strains and their corresponding genetic group.[br/] Conclusion The capacity to detect and identify the strains of the spoilage yeast based on their biofilm formation abilities may help to develop more efficient cleaning procedures and preventing methods

    Appl Microbiol Biotechnol

    No full text
    Non-Saccharomyces (NS) species that are either naturally present in grape must or added in mixed fermentation with S. cerevisiae may impact the wine's chemical composition and sensory properties. NS yeasts are prevailing during prefermentation and early stages of alcoholic fermentation. However, obtaining the correct balance between S. cerevisiae and NS species is still a critical issue: if S. cerevisiae outcompetes the non-Saccharomyces, it may minimize their impact, while conversely if NS take over S. cerevisiae, it may result in stuck or sluggish fermentations. Here, we propose an original strategy to promote the non-Saccharomyces consortium during the prefermentation stage while securing fermentation completion: the use of a long lag phase S. cerevisiae. Various fermentations in a Sauvignon Blanc with near isogenic S. cerevisiae displaying short or long lag phase were compared. Fermentations were performed with or without a consortium of five non-Saccharomyces yeasts (Hanseniaspora uvarum, Candida zemplinina, Metschnikowia spp., Torulaspora delbrueckii, and Pichia kluyveri), mimicking the composition of natural NS community in grape must. The sensorial analysis highlighted the positive impact of the long lag phase on the wine fruitiness and complexity. Surprisingly, the presence of NS modified only marginally the wine composition but significantly impacted the lag phase of S. cerevisiae. The underlying mechanisms are still unclear, but it is the first time that a study suggests that the wine composition can be affected by the lag phase duration per se. Further experiments should address the suitability of the use of long lag phase S. cerevisiae in winemaking

    Starter cultures as biocontrol strategy to prevent Brettanomyces bruxellensis proliferation in wine

    No full text
    Brettanomyces bruxellensis is a common and significant wine spoilage microorganism. B. bruxellensis strains generally detain the molecular basis to produce compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols that derive from the sequential bioconversion of specific hydroxycinnamic acids such as ferulate and pcoumarate. Although B. bruxellensis can be detected at any stage of the winemaking process, it is typically isolated at the end of the alcoholic fermentation (AF), before the staring of the spontaneous malolactic fermentation (MLF) or during barrel aging. For this reason, the endemic diffusion of B. bruxellensis leads to consistent economic losses in the wine industry. Considering the interest in reducing sulfur dioxide use during winemaking, in recent years, biological alternatives, such as the use of tailored selected yeast and bacterial strains inoculated to promote AF and MLF, are actively sought as biocontrol agents to avoid the BBretta^ character in wines. Here, we review the importance of dedicated characterization and selection of starter cultures for AF andMLF in wine, in order to reduce or prevent both growth of B. bruxellensis and its production of volatile phenols in the matrix

    Yeast Ecology of Wine Production

    No full text
    none2mixedCiani, Maurizio; Comitini, FrancescaCiani, Maurizio; Comitini, Francesc
    corecore