192 research outputs found

    Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling

    Get PDF
    FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxoindependent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor. Molecular Systems Biology 7: 502; published online 21 June 2011; doi:10.1038/msb.2011.3

    Cognitive disorders in patients with chronic kidney disease: specificities of clinical assessment

    Get PDF
    Neurocognitive disorders are frequent among chronic kidney disease (CKD) patients. Identifying and characterizing cognitive impairment (CI) can help to assess the ability of adherence to CKD risk reduction strategy, identify potentially reversible causes of cognitive decline, modify pharmacotherapy, educate the patient and caregiver and provide appropriate patient and caregiver support. Numerous factors are associated with the development and progression of CI in CKD patients and various conditions can influence the results of cognitive assessment in these patients. Here we review clinical warning signs that should lead to cognitive screening; conditions frequent in CKD at risk to interfere with cognitive testing or performance, including specificities of cognitive assessment in dialysis patients or after kidney transplantation; and available tests for screening and observed cognitive patterns in CKD patients

    A microbial supply chain for production of the anti-cancer drug vinblastine

    Get PDF
    International audienceAbstract Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine 1 . As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus , which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale 2,3 . Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues

    Brain dysfunction in tubular and tubulointerstitial kidney diseases

    Get PDF
    Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a decreased GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue we selected a group of primary tubular diseases with preserved GFR in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen Bartter and Gitelman syndromes and nephrogenic diabetes insipidus as examples to highlight this topic. We discuss current published findings, some unanswered questions and propose topics for future research

    Macroscopic findings in collagenous colitis:a multi-center, retrospective, observational cohort study

    Get PDF
    Background Collagenous colitis (CC) is by definition a histological diagnosis. However, colonoscopy often reveals characteristic endoscopic findings. The aim of this study was to evaluate the frequency and type of endoscopic findings in patients diagnosed with CC in 4 participating centers. Methods This was a retrospective study; the databases of 2 university hospitals in Edinburgh (Scotland) and Malmö (Sweden), and 2 district general hospitals in Tomelloso (Spain) and Gateshead (England) were interrogated for patients diagnosed with CC between May 2008 and August 2013. Endoscopy reports and images were retrieved and reviewed; data on lesions, sedation, bowel preparation and endoscopist experience were abstracted. Categorical data are reported as mean±SD. Fischer’s exact, chi-square and t (unpaired) tests were used to compare datasets. A two-tailed P-value of <0.05 was considered statistically significant. Results 607 patients (149 male, mean age 66.9±12.25 years) were diagnosed with CC. A total of 108/607 (17.8%) patients had one or more suggestive endoscopy findings: i.e., mucosal erythema/edema, 91/607 (15%); linear colonic mucosal defects, 12/607 (2%); or mucosal scarring, 5/607 (0.82%). For colonic mucosa erythema, there was no difference in the odds of finding erythema with the use of different bowel preparation methods (P=0.997). For colonic mucosal defects there was some evidence (P=0.005) that patients colonoscoped by experienced endoscopists had 87% less odds of developing such defects. Moreover, there was evidence that analgesia reduced the odds of developing mucosal defects by 84%. Conclusion A significant minority of patients with CC have endoscopic findings in colonoscopy. The description of such findings appears to be related to the endoscopist’s experience

    Co-Regulation of the DAF-16 Target Gene, cyp-35B1/dod-13, by HSF-1 in C. elegans Dauer Larvae and daf-2 Insulin Pathway Mutants

    Get PDF
    Insulin/IGF-I-like signaling (IIS) has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans
    corecore