571 research outputs found
Linking urban design to sustainability : formal indicators of social urban sustainability field research in Perth, Western Australia
The making of a livable urban community is a complex endeavor. For much of the 20th Century plannersand engineers believed that modern and rational decision-making would create successful cities. Today, political leaders across the globe are considering ways to promote sustainable development and the concepts of New Urbanism are making their way from the drawing board to the ground. While much has changed in the world, the creation of a successful street is as much of an art today as it was in the 1960s.Our work seeks to investigate 'street life' in cities as a crucial factor towards community success. What arethe components of the neighborhood and street form that contributes to the richness of street life? To answer this question we rely on the literature. The aim of the Formal Indicators of Social Urban Sustainability studyis to measure the formal components of a neighborhood and street that theorists have stated important in promoting sustainability. This paper will describe how this concept helps to bridge urban design and sustainability. It will describe the tool and show how this was applied in a comparative assessment of Joondalup and Fremantle, two urban centers in the Perth metropolitan area
Product Service System Innovation in the Smart City
Product service systems (PSS) may usefully form part of the mix of innovations necessary to move society toward more sustainable futures. However, despite such potential, PSS implementation is highly uneven and limited. Drawing on an alternate socio-technical perspective of innovation, this paper provides fresh insights, on among other things the role of context in PSS innovation, to address this issue. Case study research is presented focusing on a use orientated PSS in an urban environment: the Copenhagen city bike scheme. The paper shows that PSS innovation is a situated complex process, shaped by actors and knowledge from other locales. It argues that further research is needed to investigate how actors interests shape PSS innovation. It recommends that institutional spaces should be provided in governance landscapes associated with urban environments to enable legitimate PSS concepts to co-evolve in light of locally articulated sustainability principles and priorities
Rapid earthquake loss updating of spatially distributed systems via sampling-based bayesian inference
Within moments following an earthquake event, observations collected from the affected area can be used to define a picture of expected losses and to provide emergency services with accurate information. A Bayesian Network framework could be used to update the prior loss estimates based on ground-motion prediction equations and fragility curves, considering various field observations (i.e., evidence). While very appealing in theory, Bayesian Networks pose many challenges when applied to real-world infrastructure systems, especially in terms of scalability. The present study explores the applicability of approximate Bayesian inference, based on Monte-Carlo Markov-Chain sampling algorithms, to a real-world network of roads and built areas where expected loss metrics pertain to the accessibility between damaged areas and hospitals in the region. Observations are gathered either from free-field stations (for updating the ground-motion field) or from structure-mounted stations (for the updating of the damage states of infrastructure components). It is found that the proposed Bayesian approach is able to process a system comprising hundreds of components with reasonable accuracy, time and computation cost. Emergency managers may readily use the updated loss distributions to make informed decisions
Characterization of 1D photonic crystal nanobeam cavities using curved microfiber
We investigate high-Q, small mode volume photonic crystal nanobeam cavities using a curved, tapered optical microfiber loop. The strength of the coupling between the cavity and the microfiber loop is shown to depend on the contact position on the nanobeam, angle between the nanobeam and the microfiber, and polarization of the light in the fiber. The results are compared to a resonant scattering measurement
Recommended from our members
Comparative Study of Vented vs. Unvented Crawlspaces
There has been a significant amount of research in the area of building energy efficiency and durability. However, well-documented quantitative information on the impact of crawlspaces on the performance of residential structures is lacking. The objective of this study was to evaluate and compare the effects of two crawlspace strategies on the whole-house performance of a pair of houses in a mixed humid climate. These houses were built with advanced envelope systems to provide energy savings of 50% or more compared to traditional 2010 new construction. One crawlspace contains insulated walls and is sealed and semi-conditioned. The other is a traditional vented crawlspace with insulation in the crawlspace ceiling. The vented (traditional) crawlspace contains fiberglass batts installed in the floor chase cavities above the crawl, while the sealed and insulated crawlspace contains foil-faced polyisocyanurate foam insulation on the interior side of the masonry walls. Various sensors to measure temperatures, heat flux through crawlspace walls and ceiling, and relative humidity were installed in the two crawlspaces. Data from these sensors have been analyzed to compare the performance of the two crawlspace designs. The analysis results indicated that the sealed and insulated crawlspace design is better than the traditional vented crawlspace in the mixed humid climate
Non-resonant Bragg scattering four-wave-mixing at near visible wavelengths in low-confinement silicon nitride waveguides
Quantum state coherent frequency conversion processes-such as Bragg
scattering four wave mixing (BSFWM)-hold promise as a flexible technique for
networking heterogeneous and distant quantum systems. In this letter, we
demonstrate BSFWM within an extended (1.2-m) low-confinement silicon nitride
waveguide and show that this system has the potential for near unity quantum
coherent frequency conversion in visible and near-visible wavelength ranges.
Using sensitive heterodyne laser spectroscopy at low optical powers, we
characterize the Kerr coefficient (~1.55 W^{-1} m^{-1}) and linear propagation
loss (~0.0175 dB/cm) of this non-resonant waveguide system, revealing a
record-high nonlinear figure of merit (NFM = gamma/alpha is approximately equal
to 3.85 W^{-1}) for BSFWM of near visible light in non-resonant silicon nitride
waveguides. We demonstrate how, at high yet achievable on-chip optical powers,
this NFM would yield a comparatively large frequency conversion efficiency,
opening the door to near-unity flexible frequency conversion without cavity
enhancement and resulting bandwidth constraints.Comment: 4 pages, 5 figure
Comparative Study of Vented vs. Unvented Crawlspaces
There has been a significant amount of research in the area of building energy efficiency and durability. However, well-documented quantitative information on the impact of crawlspaces on the performance of residential structures is lacking. The objective of this study was to evaluate and compare the effects of two crawlspace strategies on the whole-house performance of a pair of houses in a mixed humid climate. These houses were built with advanced envelope systems to provide energy savings of 50% or more compared to traditional 2010 new construction. One crawlspace contains insulated walls and is sealed and semi-conditioned. The other is a traditional vented crawlspace with insulation in the crawlspace ceiling. The vented (traditional) crawlspace contains fiberglass batts installed in the floor chase cavities above the crawl, while the sealed and insulated crawlspace contains foil-faced polyisocyanurate foam insulation on the interior side of the masonry walls. Various sensors to measure temperatures, heat flux through crawlspace walls and ceiling, and relative humidity were installed in the two crawlspaces. Data from these sensors have been analyzed to compare the performance of the two crawlspace designs. The analysis results indicated that the sealed and insulated crawlspace design is better than the traditional vented crawlspace in the mixed humid climate
Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities
In this work we study the effect of thin-film deposition on the quality factor (Q) of silicon nanobeam cavities. We observe an average increase in the Q of 38±31% in one sample and investigate the dependence of this increase on the initial nanobeam hole sizes. We note that this process can be used to modify cavities that have larger than optimal hole sizes following fabrication. Additionally, the technique allows the tuning of the cavity mode wavelength and the incorporation of new materials, without significantly degrading Q
- …