24,442 research outputs found
Isovector spin-singlet (T=1, S=0) and isoscalar spin-triplet (T=0, S=1) pairing interactions and spin-isospin response
We review several experimental and theoretical advances that emphasise common
aspects of the study of T=1 and T=0 pairing correlations in nuclei. We first
discuss several empirical evidences of the special role played by the T=1
pairing interaction. In particular, we show the peculiar features of the
nuclear pairing interaction in the low density regime, and possible outcomes
such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in
loosely bound nuclei. We then move to the competition between T=1 and T=0
pairing correlations. The effect of such competition on the low-lying spectra
is studied in N=Z odd-odd nuclei by using a three-body model; it is shown that
the inversion of the 0+ and 1+ states near the ground state, and the strong
magnetic dipole transitions between them, can be considered as a clear
manifestation of strong T=0 pairing correlations in these nuclei. The effect of
T=0 pairing correlations is also quite evident if one studies charge-changing
transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by
using self-consistent HFB+QRPA calculations in which the T=0 pairing
interaction is taken into account. Strong GT states are found, near the ground
state of daughter nuclei; these are compared with available experimental data
from charge-exchange reactions, and such comparison can pinpoint the value of
the strength of the T=0 interaction. Pair transfer reactions are eventually
discussed: while two-neutron transfer has been long proposed as a tool to
measure the T=1 superfluidity in the nuclear ground states, the study of
deuteron transfer is still in its infancy, despite its potential interest in
revealing effects coming from both T=1 and T=0 interactions.Comment: Paper submitted to Physica Scripta for inclusion in the Focus Issue
entitled "Focus Issue on Nuclear Structure: Celebrating the 75 Nobel Prize"
(by A. Bohr and B.R. Mottelson). arXiv admin note: text overlap with
arXiv:nucl-th/0512021 by other author
Quasi-particle random phase approximation with quasi-particle-vibration coupling: application to the Gamow-Teller response of the superfluid nucleus Sn
We propose a self-consistent quasi-particle random phase approximation (QRPA)
plus quasi-particle-vibration coupling (QPVC) model with Skyrme interactions to
describe the width and the line shape of giant resonances in open-shell nuclei,
in which the effect of superfluidity should be taken into account in both the
ground state and the excited states. We apply the new model to the Gamow-Teller
resonance in the superfluid nucleus Sn, including both the isoscalar
spin-triplet and the isovector spin-singlet pairing interactions. The strength
distribution in Sn is well reproduced and the underlying microscopic
mechanisms, related to QPVC and also to isoscalar pairing, are analyzed in
detail.Comment: 32 pages, 11 figures, 4 table
Tunneling dynamics of side chains and defects in proteins, polymer glasses, and OH-doped network glasses
Simulations on a Lennard-Jones computer glass are performed to study effects
arising from defects in glasses at low temperatures. The numerical analysis
reveals that already a low concentration of defects may dramatically change the
low temperature properties by giving rise to extrinsic double-well potentials
(DWP's). The main characteristics of these extrinsic DWP's are (i) high barrier
heights, (ii) high probability that a defect is indeed connected with an
extrinsic DWP, (iii) highly localized dynamics around this defect, and (iv)
smaller deformation potential coupling to phonons. Designing an extension of
the Standard Tunneling Model (STM) which parametrizes this picture and
comparing with ultrasound experiments on the wet network glass -BO
shows that effects of OH-impurities are accurately accounted for. This model is
then applied to organic polymer glasses and proteins. It is suggested that side
groups may act similarly like doped impurities inasmuch as extrinsic DWP's are
induced, which possess a distribution of barriers peaked around a high barrier
height. This compares with the structurlessly distributed barrier heights of
the intrinsic DWP's, which are associated with the backbone dynamics. It is
shown that this picture is consistent with elastic measurements on polymers,
and can explain anomalous nonlogarithmic line broadening recently observed in
hole burning experiments in PMMA.Comment: 34 pages, Revtex, 9 eps-figures, accepted for publication in J. Chem.
Phy
Recommended from our members
Deep learning for cardiac image segmentation: A review
Deep learning has become the most widely used approach for cardiac image segmentation in recent years. In this paper, we provide a review of over 100 cardiac image segmentation papers using deep learning, which covers common imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (US) and major anatomical structures of interest (ventricles, atria and vessels). In addition, a summary of publicly available cardiac image datasets and code repositories are included to provide a base for encouraging reproducible research. Finally, we discuss the challenges and limitations with current deep learning-based approaches (scarcity of labels, model generalizability across different domains, interpretability) and suggest potential directions for future research
Spin and lattice excitations of a BiFeO3 thin film and ceramics
We present a comprehensive study of polar and magnetic excitations in BiFeO3
ceramics and a thin film epitaxially grown on an orthorhombic (110) TbScO3
substrate. Infrared reflectivity spectroscopy was performed at temperatures
from 5 to 900 K for the ceramics and below room temperature for the thin film.
All 13 polar phonons allowed by the factor-group analysis were observed in
theceramic samples. The thin-film spectra revealed 12 phonon modes only and an
additional weak excitation, probably of spin origin. On heating towards the
ferroelectric phase transition near 1100 K, some phonons soften, leading to an
increase in the static permittivity. In the ceramics, terahertz transmission
spectra show five low-energy magnetic excitations including two which were not
previously known to be infrared active; at 5 K, their frequencies are 53 and 56
cm-1. Heating induces softening of all magnetic modes. At a temperature of 5 K,
applying an external magnetic field of up to 7 T irreversibly alters the
intensities of some of these modes. The frequencies of the observed spin
excitations provide support for the recently developed complex model of
magnetic interactions in BiFeO3 (R.S. Fishman, Phys. Rev. B 87, 224419 (2013)).
The simultaneous infrared and Raman activity of the spin excitations is
consistent with their assignment to electromagnons
Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei
The effects of -tensor coupling on the spin
symmetry of spectra in -nucleus systems have
been studied with the relativistic mean-field theory. Taking
C+ as an example, it is found that the tensor coupling
enlarges the spin-orbit splittings of by an order of magnitude
although its effects on the wave functions of are negligible.
Similar conclusions has been observed in -nucleus of different
mass regions, including O+, Ca+ and
Pb+. It indicates that the spin symmetry in
anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures
Clinical course of ectopic pregnancy:a tertiary centre experience
Background: Ectopic pregnancy (EP) is one of the causes of maternal mortality and morbidity in the first trimester. EP is still a major challenge and its incidence is on the rise due to changes in lifestyle and advances in medical practice. The early diagnosis and treatment of this condition over the past two decades has allowed a definitive medical management of unruptured ectopic pregnancies even before there were clinical symptoms in these high-risk women.Methods: It was a retrospective study of 100 cases of EP conducted in the Department of Obstetrics and Gynecology, Bowring and Lady Curzon Hospital, attached to Bangalore medical college, Bengaluru for a period of 3 years. The aim of the study was to study the incidence, risk factors, clinical profile and management of EP cases.Results: Incidence of EP was 1.3% of all deliveries and 5.6% of gynecological surgeries. Peak age group was between 25-30 years (37%). Most of them were multiparous (83%), 58% of the patients had identifiable risk factors. 95% had amenorrhea, followed by pain abdomen in 81%, bleeding PV in 43%. 17% presented with shock. 91% patients presented with ruptured ectopic, 9% were unruptured. Unruptured cases were treated medically using Methotrexate. Laparotomy was done for ruptured cases. Commonest site of Ectopic was ampulla (81%). Salpingectomy was done for most cases (86%). No maternal mortality observed.Conclusions: All high-risk women should be screened at the earliest with serum β-hCG and TVS. The impact on future fertility can be improved by focusing on primary prevention and early diagnosis before rupture
- …