623 research outputs found

    Anisotropic magneto-Coulomb effect versus spin accumulation in a ferromagnetic single-electron device

    Full text link
    We investigate the magneto-transport characteristics of nanospintronics single-electron devices. The devices consist of single non-magnetic nano-objects (nanometer size nanoparticles of Al or Cu) connected to Co ferromagnetic leads. The comparison with simulations allows us attribute the observed magnetoresistance to either spin accumulation or anisotropic magneto-Coulomb effect (AMC), two effects with very different origins. The fact that the two effects are observed in similar samples demonstrates that a careful analysis of Coulomb blockade and magnetoresistance behaviors is necessary in order to discriminate them in magnetic single-electron devices. As a tool for further studies, we propose a simple way to determine if spin transport or AMC effect dominates from the Coulomb blockade I-V curves of the spintronics device

    Enhancement of the Spin Accumulation at the Interface Between a Spin-Polarized Tunnel Junction and a Semiconductor

    Full text link
    We report on spin injection experiments at a Co/Al2_2O3_3/GaAs interface with electrical detection. The application of a transverse magnetic field induces a large voltage drop ΔV\Delta V at the interface as high as 1.2mV for a current density of 0.34 nA.μm2\mu m^{-2}. This represents a dramatic increase of the spin accumulation signal, well above the theoretical predictions for spin injection through a ferromagnet/semiconductor interface. Such an enhancement is consistent with a sequential tunneling process via localized states located in the vicinity of the Al2_2O3_3/GaAs interface. For spin-polarized carriers these states act as an accumulation layer where the spin lifetime is large. A model taking into account the spin lifetime and the escape tunneling time for carriers travelling back into the ferromagnetic contact reproduces accurately the experimental results

    Mechanisms of spin-polarized current-driven magnetization switching

    Full text link
    The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes

    Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper

    Get PDF
    We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)(2.1 \pm 0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.Comment: 5 pages, 4 figure

    Ordering in a spin glass under applied magnetic field

    Full text link
    Torque, torque relaxation, and magnetization measurements on a AuFe spin glass sample are reported. The experiments carried out up to 7 T show a transverse irreversibility line in the (H,T) plane up to high applied fields, and a distinct strong longitudinal irreversibility line at lower fields. The data demonstrate for that this type of sample, a Heisenberg spin glass with moderately strong anisotropy, the spin glass ordered state survives under high applied fields in contrast to predictions of certain "droplet" type scaling models. The overall phase diagram closely ressembles those of mean field or chiral models, which both have replica symmetry breaking transitions.Comment: 4 pages, 3 figures, accepted for PR

    Coupling efficiency for phase locking of a spin transfer oscillator to a microwave current

    Full text link
    The phase locking behavior of spin transfer nano-oscillators (STNOs) to an external microwave signal is experimentally studied as a function of the STNO intrinsic parameters. We extract the coupling strength from our data using the derived phase dynamics of a forced STNO. The predicted trends on the coupling strength for phase locking as a function of intrinsic features of the oscillators i.e. power, linewidth, agility in current, are central to optimize the emitted power in arrays of mutually coupled STNOs

    Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque

    Full text link
    We investigate the dynamics of two coupled vortices driven by spin transfer. We are able to independently control with current and perpendicular field, and to detect, the respective chiralities and polarities of the two vortices. For current densities above J=5.7107A/cm2J=5.7*10^7 A/cm^2, a highly coherent signal (linewidth down to 46 kHz) can be observed, with a strong dependence on the relative polarities of the vortices. It demonstrates the interest of using coupled dynamics in order to increase the coherence of the microwave signal. Emissions exhibit a linear frequency evolution with perpendicular field, with coherence conserved even at zero magnetic field

    Spin injection in a single metallic nanoparticle: a step towards nanospintronics

    Full text link
    We have fabricated nanometer sized magnetic tunnel junctions using a new nanoindentation technique in order to study the transport properties of a single metallic nanoparticle. Coulomb blockade effects show clear evidence for single electron tunneling through a single 2.5 nm Au cluster. The observed magnetoresistance is the signature of spin conservation during the transport process through a non magnetic cluster.Comment: 3 page

    Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    Full text link
    We report an experimental study of a gold-tungsten alloy (7% at. W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity and small induced damping, this AuW alloy may find applications in the nearest future
    corecore