17 research outputs found

    Fission Yeast Sec3 and Exo70 Are Transported on Actin Cables and Localize the Exocyst Complex to Cell Poles

    Get PDF
    The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk

    Regulation of Fission Yeast Morphogenesis by PP2A Activator pta2

    Get PDF
    Cell polarization is key for the function of most eukaryotic cells, and regulates cell shape, migration and tissue architecture. Fission yeast, Schizosaccharomyces pombe cells are cylindrical and polarize cell growth to one or both cell tips dependent on the cell cycle stage. Whereas microtubule cytoskeleton contributes to the positioning of the growth sites by delivering polarity factors to the cell ends, the Cdc42 GTPase polarizes secretion via actin-dependent delivery and tethering of secretory vesicles to plasma membrane. How growth is restricted to cell tips and how re-initiation of tip growth is regulated in the cell cycle remains poorly understood. In this work we investigated the function of protein phosphatase type 2A (PP2A) in S. pombe morphogenesis by deleting the evolutionary conserved PTPA-type regulatory subunit that we named pta2. pta2-deleted cells showed morphological defects and altered growth pattern. Consistent with this, actin patches and active Cdc42 were mislocalized in the pta2 deletion. These defects were additive to the lack of Cdc42-GAP Rga4. pta2Δ cells show upregulated Cdc42 activity and pta2 interacts genetically with polarisome components Tea1, Tea4 and For3 leading to complete loss of cell polarity and rounded morphology. Thus, regulation of polarity by PP2A requires the polarisome and involves Pta2-dependent control of Cdc42 activity

    Odor Learning and Its Experience-Dependent Modulation in the South American Native Bumblebee Bombus atratus (Hymenoptera: Apidae)

    No full text
    Learning about olfactory stimuli is essential in bumblebees’ life since it is involved in orientation, recognition of nest sites, foraging efficiency and food yield for the colony as a whole. To evaluate associative learning abilities in bees under controlled environmental conditions, the proboscis extension response (PER) assay is a well-established method used in honey bees, stingless bees and successfully adapted to bumblebees of the genus Bombus. However, studies on the learning capacity of Bombus atratus (Hymenoptera: Apidae), one of the most abundant native species in South America, are non-existent. In this study, we examined the cognitive abilities of worker bees of this species, carrying out an olfactory PER conditioning experiment. Bumblebees were able to learn a pure odor when it was presented in paired association with sugared reward, but not when odor and reward were presented in an unpaired manner. Furthermore, if the bees were preexposed to the conditioned odor, the results differed depending on the presence of the scent either as a volatile in the rearing environment or diluted in the food. A decrement in learning performance results from the non-reinforced pre-exposure to the to-be-conditioned odor, showing a latent inhibition phenomenon. However, if the conditioned odor has been previously offered diluted in sugared reward, the food odor acts as a stimulus that improves the learning performance during PER conditioning. The native bumblebee B. atratus is thus a new hymenopteran species capable of being trained under controlled experimental conditions. Since it is an insect increasingly reared for pollination service, this knowledge could be useful in its management in crops

    Table_1_Odor Learning and Its Experience-Dependent Modulation in the South American Native Bumblebee Bombus atratus (Hymenoptera: Apidae).pdf

    No full text
    <p>Learning about olfactory stimuli is essential in bumblebees’ life since it is involved in orientation, recognition of nest sites, foraging efficiency and food yield for the colony as a whole. To evaluate associative learning abilities in bees under controlled environmental conditions, the proboscis extension response (PER) assay is a well-established method used in honey bees, stingless bees and successfully adapted to bumblebees of the genus Bombus. However, studies on the learning capacity of Bombus atratus (Hymenoptera: Apidae), one of the most abundant native species in South America, are non-existent. In this study, we examined the cognitive abilities of worker bees of this species, carrying out an olfactory PER conditioning experiment. Bumblebees were able to learn a pure odor when it was presented in paired association with sugared reward, but not when odor and reward were presented in an unpaired manner. Furthermore, if the bees were preexposed to the conditioned odor, the results differed depending on the presence of the scent either as a volatile in the rearing environment or diluted in the food. A decrement in learning performance results from the non-reinforced pre-exposure to the to-be-conditioned odor, showing a latent inhibition phenomenon. However, if the conditioned odor has been previously offered diluted in sugared reward, the food odor acts as a stimulus that improves the learning performance during PER conditioning. The native bumblebee B. atratus is thus a new hymenopteran species capable of being trained under controlled experimental conditions. Since it is an insect increasingly reared for pollination service, this knowledge could be useful in its management in crops.</p
    corecore