4,182 research outputs found
Technical note: testing an improved index for analysing storm discharge-concentration hysteresis
Analysis of hydrochemical behaviour during storm events can provide new insights into the process controls on nutrient transport in catchments. The examination of storm behaviours using hysteresis analysis has increased in recent years, partly due to the increased availability of high temporal resolution data sets for discharge and water quality parameters. A number of these analyses involve the use of an index to describe the characteristics of a hysteresis loop in order to compare storm behaviours both within and between catchments. This technical note reviews the methods for calculation of the hysteresis index (HI) and explores a new more effective methodology. Each method is systematically tested and the impact of the chosen calculation on the results is examined. Recommendations are made regarding the most effective method of calculating a HI which can be used for comparing data between storms and between different water quality parameters and catchments
From the stable to the exotic: clustering in light nuclei
A great deal of research work has been undertaken in alpha-clustering study
since the pioneering discovery of 12C+12C molecular resonances half a century
ago. Our knowledge on physics of nuclear molecules has increased considerably
and nuclear clustering remains one of the most fruitful domains of nuclear
physics, facing some of the greatest challenges and opportunities in the years
ahead. The occurrence of "exotic" shapes in light N=Z alpha-like nuclei is
investigated. Various approaches of the superdeformed and hyperdeformed bands
associated with quasimolecular resonant structures are presented. Evolution of
clustering from stability to the drip-lines is examined: clustering aspects
are, in particular, discussed for light exotic nuclei with large neutron excess
such as neutron-rich Oxygen isotopes with their complete spectroscopy.Comment: 15 pages, 5 figures, Presented at the International Symposium on "New
Horizons in Fundamental Physics - From Neutrons Nuclei via Superheavy
Elements and Supercritical Fields to Neutron Stars and Cosmic Rays" held at
Makutsi Safari Farm, South Africa, December 23-29, 2015. arXiv admin note:
substantial text overlap with arXiv:1402.6590, arXiv:1303.0960,
arXiv:1408.0684, arXiv:1011.342
A high-resolution global flood hazard model
Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ∼90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ∼1 km, mean absolute error in flooded fraction falls to ∼5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.</p
Recommended from our members
The impact of uncertain precipitation data on insurance loss estimates using a flood catastrophe model
Catastrophe risk models used by the insurance industry are likely subject to significant uncertainty, but due to their proprietary nature and strict licensing conditions they are not available for experimentation. In addition, even if such experiments were conducted, these would not be repeatable by other researchers because commercial confidentiality issues prevent the details of proprietary catastrophe model structures from being described in public domain documents. However, such experimentation is urgently required to improve decision making in both insurance and reinsurance markets. In this paper we therefore construct our own catastrophe risk model for flooding in Dublin, Ireland, in order to assess the impact of typical precipitation data uncertainty on loss predictions. As we consider only a city region rather than a whole territory and have access to detailed data and computing resources typically unavailable to industry modellers, our model is significantly more detailed than most commercial products. The model consists of four components, a stochastic rainfall module, a hydrological and hydraulic flood hazard module, a vulnerability module, and a financial loss module. Using these we undertake a series of simulations to test the impact of driving the stochastic event generator with four different rainfall data sets: ground gauge data, gauge-corrected rainfall radar, meteorological reanalysis data (European Centre for Medium-Range Weather Forecasts Reanalysis-Interim; ERA-Interim) and a satellite rainfall product (The Climate Prediction Center morphing method; CMORPH). Catastrophe models are unusual because they use the upper three components of the modelling chain to generate a large synthetic database of unobserved and severe loss-driving events for which estimated losses are calculated. We find the loss estimates to be more sensitive to uncertainties propagated from the driving precipitation data sets than to other uncertainties in the hazard and vulnerability modules, suggesting that the range of uncertainty within catastrophe model structures may be greater than commonly believed
The population of deformed bands in Cr by emission of Be from the S + Mg reaction
Using particle- coincidences we have studied the population of final
states after the emission of 2 -particles and of Be in nuclei
formed in S+Mg reactions at an energy of . The data were obtained in a setup
consisting of the GASP -ray detection array and the multidetector array
ISIS. Particle identification is obtained from the E and E signals of
the ISIS silicon detector telescopes, the Be being identified by the
instantaneous pile up of the E and E pulses. -ray decays of the
Cr nucleus are identified with coincidences set on 2 -particles
and on Be. Some transitions of the side-band with show
stronger population for Be emission relative to that of 2
-particles (by a factor ). This observation is interpreted as
due to an enhanced emission of Be into a more deformed nucleus.
Calculations based on the extended Hauser-Feshbach compound decay formalism
confirm this observation quantitatively.Comment: 17 pages, 9 figures accepted for publication in J. Phys.
High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England
This paper uses high-frequency bankside measurements from three catchments selected as part of the UK government-funded Demonstration Test Catchments (DTC) project. We compare the hydrological and hydrochemical patterns during the water year 2011–2012 from the Wylye tributary of the River Avon with mixed land use, the Blackwater tributary of the River Wensum with arable land use and the Newby Beck tributary of the River Eden with grassland land use. The beginning of the hydrological year was unusually dry and all three catchments were in states of drought. A sudden change to a wet summer occurred in April 2012 when a heavy rainfall event affected all three catchments. The year-long time series and the individual storm responses captured by in situ nutrient measurements of nitrate and phosphorus (total phosphorus and total reactive phosphorus) concentrations at each site reveal different pollutant sources and pathways operating in each catchment. Large storm-induced nutrient transfers of nitrogen and or phosphorus to each stream were recorded at all three sites during the late April rainfall event. Hysteresis loops suggested transport-limited delivery of nitrate in the Blackwater and of total phosphorus in the Wylye and Newby Beck, which was thought to be exacerbated by the dry antecedent conditions prior to the storm. The high rate of nutrient transport in each system highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to rivers from diffuse agricultural sources. It also highlights the scale of the challenge in adapting to future extreme weather events under a changing climate
New Measurement of the Direct 3α Decay from the 12C Hoyle State
Excited states in certain atomic nuclei possess an unusual structure, where the dominant degrees of freedom are those of α clusters rather than individual nucleons. It has been proposed that the diffuse 3α system of the 12C Hoyle state may behave like a Bose-Einstein condensate, where the α clusters maintain their bosonic identities. By measuring the decay of the Hoyle state into three α particles, we obtained an upper limit for the rare direct 3α decay branch of 0.047%. This value is now at a level comparable with theoretical predictions and could be a sensitive probe of the structure of this state
Broadband characterisation of interior materials and surface scattering using terahertz time-domain spectroscopy
Indoor wireless communications need to move towards Terahertz (THz) frequencies in order to keep up with society's demand for data transmission, but this change is currently hindered by limited knowledge of material properties and propagation and scattering models at these frequencies. The dielectric properties of common household materials are investigated here with a twofold objective: (1) to extend the library of material properties at THz, and (2) to estimate and disentangle losses in scattering measurements in order to facilitate propagation, scattering and, ultimately, channel models
Electrically controlling single spin qubits in a continuous microwave field
Large-scale quantum computers must be built upon quantum bits that are both
highly coherent and locally controllable. We demonstrate the quantum control of
the electron and the nuclear spin of a single 31P atom in silicon, using a
continuous microwave magnetic field together with nanoscale electrostatic
gates. The qubits are tuned into resonance with the microwave field by a local
change in electric field, which induces a Stark shift of the qubit energies.
This method, known as A-gate control, preserves the excellent coherence times
and gate fidelities of isolated spins, and can be extended to arbitrarily many
qubits without requiring multiple microwave sources.Comment: Main paper: 13 pages, 4 figures. Supplementary information: 25 pages,
13 figure
- …