2,032 research outputs found
Zero-Turbulence Manifold in a Toroidal Plasma
Sheared toroidal flows can cause bifurcations to zero-turbulent-transport
states in tokamak plasmas. The maximum temperature gradients that can be
reached are limited by subcritical turbulence driven by the parallel velocity
gradient. Here it is shown that q/\epsilon (magnetic field pitch/inverse aspect
ratio) is a critical control parameter for sheared tokamak turbulence. By
reducing q/\epsilon, far higher temperature gradients can be achieved without
triggering turbulence, in some instances comparable to those found
experimentally in transport barriers. The zero-turbulence manifold is mapped
out, in the zero-magnetic-shear limit, over the parameter space (\gamma_E,
q/\epsilon, R/L_T), where \gamma_E is the perpendicular flow shear and R/L_T is
the normalised inverse temperature gradient scale. The extent to which it can
be constructed from linear theory is discussed.Comment: 5 Pages, 4 Figures, Submitted to PR
Transport Bifurcation in a Rotating Tokamak Plasma
The effect of flow shear on turbulent transport in tokamaks is studied
numerically in the experimentally relevant limit of zero magnetic shear. It is
found that the plasma is linearly stable for all non-zero flow shear values,
but that subcritical turbulence can be sustained nonlinearly at a wide range of
temperature gradients. Flow shear increases the nonlinear temperature gradient
threshold for turbulence but also increases the sensitivity of the heat flux to
changes in the temperature gradient, except over a small range near the
threshold where the sensitivity is decreased. A bifurcation in the equilibrium
gradients is found: for a given input of heat, it is possible, by varying the
applied torque, to trigger a transition to significantly higher temperature and
flow gradients.Comment: 4 pages, 4 figures, submitted to PR
Dissipation-Scale Turbulence in the Solar Wind
We present a cascade model for turbulence in weakly collisional plasmas that
follows the nonlinear cascade of energy from the large scales of driving in the
MHD regime to the small scales of the kinetic Alfven wave regime where the
turbulence is dissipated by kinetic processes. Steady-state solutions of the
model for the slow solar wind yield three conclusions: (1) beyond the observed
break in the magnetic energy spectrum, one expects an exponential cut-off; (2)
the widely held interpretation that this dissipation range obeys power-law
behavior is an artifact of instrumental sensitivity limitations; and, (3) over
the range of parameters relevant to the solar wind, the observed variation of
dissipation range spectral indices from -2 to -4 is naturally explained by the
varying effectiveness of Landau damping, from an undamped prediction of -7/3 to
a strongly damped index around -4.Comment: 6 pages, 2 figures, accepted for publication in AIP Conference
Proceedings on "Turbulence and Nonlinear Processes in Astrophysical Plasmas
Transition to subcritical turbulence in a tokamak plasma
Tokamak turbulence, driven by the ion-temperature gradient and occurring in
the presence of flow shear, is investigated by means of local, ion-scale,
electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of
the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A
parameter scan in the local values of the ion-temperature gradient and flow
shear is performed. It is demonstrated that the experimentally observed state
is near the stability threshold and that this stability threshold is nonlinear:
sheared turbulence is subcritical, i.e. the system is formally stable to small
perturbations, but, given a large enough initial perturbation, it transitions
to a turbulent state. A scenario for such a transition is proposed and
supported by numerical results: close to threshold, the nonlinear saturated
state and the associated anomalous heat transport are dominated by long-lived
coherent structures, which drift across the domain, have finite amplitudes, but
are not volume filling; as the system is taken away from the threshold into the
more unstable regime, the number of these structures increases until they
overlap and a more conventional chaotic state emerges. Whereas this appears to
represent a new scenario for transition to turbulence in tokamak plasmas, it is
reminiscent of the behaviour of other subcritically turbulent systems, e.g.
pipe flows and Keplerian magnetorotational accretion flows.Comment: 16 pages, 5 figures, accepted to Journal of Plasma Physic
Multiscale Gyrokinetics for Rotating Tokamak Plasmas: Fluctuations, Transport and Energy Flows
This paper presents a complete theoretical framework for plasma turbulence
and transport in tokamak plasmas. The fundamental scale separations present in
plasma turbulence are codified as an asymptotic expansion in the ratio of the
gyroradius to the equilibrium scale length. Proceeding order-by-order in this
expansion, a framework for plasma turbulence is developed. It comprises an
instantaneous equilibrium, the fluctuations driven by gradients in the
equilibrium quantities, and the transport-timescale evolution of mean profiles
of these quantities driven by the fluctuations. The equilibrium distribution
functions are local Maxwellians with each flux surface rotating toroidally as a
rigid body. The magnetic equillibrium is obtained from the Grad-Shafranov
equation for a rotating plasma and the slow (resistive) evolution of the
magnetic field is given by an evolution equation for the safety factor q.
Large-scale deviations of the distribution function from a Maxwellian are given
by neoclassical theory. The fluctuations are determined by the high-flow
gyrokinetic equation, from which we derive the governing principle for
gyrokinetic turbulence in tokamaks: the conservation and local cascade of free
energy. Transport equations for the evolution of the mean density, temperature
and flow velocity profiles are derived. These transport equations show how the
neoclassical corrections and the fluctuations act back upon the mean profiles
through fluxes and heating. The energy and entropy conservation laws for the
mean profiles are derived. Total energy is conserved and there is no net
turbulent heating. Entropy is produced by the action of fluxes flattening
gradients, Ohmic heating, and the equilibration of mean temperatures. Finally,
this framework is condensed, in the low-Mach-number limit, to a concise set of
equations suitable for numerical implementation.Comment: 113 pages, 3 figure
Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence
Electrostatic turbulence in weakly collisional, magnetized plasma can be
interpreted as a cascade of entropy in phase space, which is proposed as a
universal mechanism for dissipation of energy in magnetized plasma turbulence.
When the nonlinear decorrelation time at the scale of the thermal Larmor radius
is shorter than the collision time, a broad spectrum of fluctuations at
sub-Larmor scales is numerically found in velocity and position space, with
theoretically predicted scalings. The results are important because they
identify what is probably a universal Kolmogorov-like regime for kinetic
turbulence; and because any physical process that produces fluctuations of the
gyrophase-independent part of the distribution function may, via the entropy
cascade, result in turbulent heating at a rate that increases with the
fluctuation amplitude, but is independent of the collision frequency.Comment: Revtex, 4 pages, 3 figures; replaced to match published versio
Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas
This letter presents the first ab initio, fully electromagnetic, kinetic
simulations of magnetized turbulence in a homogeneous, weakly collisional
plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic and
electric-field energy spectra show a break at the ion gyroscale; the spectral
slopes are consistent with scaling predictions for critically balanced
turbulence of Alfven waves above the ion gyroscale (spectral index -5/3) and of
kinetic Alfven waves below the ion gyroscale (spectral indices of -7/3 for
magnetic and -1/3 for electric fluctuations). This behavior is also
qualitatively consistent with in situ measurements of turbulence in the solar
wind. Our findings support the hypothesis that the frequencies of turbulent
fluctuations in the solar wind remain well below the ion cyclotron frequency
both above and below the ion gyroscale.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
- …