317 research outputs found
Reduction of nickel oxide particles by hydrogen studied in an environmental TEM
In situ reduction of nickel oxide (NiO) particles is performed under 1.3mbar of hydrogen gas (H2) in an environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS) are acquired to monitor the structural and chemical evolution of the system during reduction, whilst increasing the temperature. Ni nucleation on NiO is either observed to be epitaxial or to involve the formation of randomly oriented grains. The growth of Ni crystallites and the movement of interfaces result in the formation of pores within the NiO grains to accommodate the volume shrinkage associated with the reduction. Densification is then observed when the sample is nearly fully reduced. The reaction kinetics is obtained using EELS by monitoring changes in the shapes of the Ni L2,3 white lines. The activation energy for NiO reduction is calculated from the EELS data using both a physical model-fitting technique and a model-independent method. The results of the model-fitting procedure suggest that the reaction is described by Avrami models (whereby the growth and impingement of Ni domains control the reaction), in agreement with the ETEM observation
A new methodology to simulate subglacial deformation of water-saturated granular material
The dynamics of glaciers are to a large degree governed by processes
operating at the ice–bed interface, and one of the primary
mechanisms of glacier flow over soft unconsolidated sediments is
subglacial deformation. However, it has proven difficult to
constrain the mechanical response of subglacial sediment to the
shear stress of an overriding glacier. In this study, we present
a new methodology designed to simulate subglacial deformation using
a coupled numerical model for computational experiments on
grain-fluid mixtures. The granular phase is simulated on a per-grain
basis by the discrete element method. The pore water is modeled as
a compressible Newtonian fluid without inertia. The numerical
approach allows close monitoring of the internal behavior under
a range of conditions.
<br><br>
Our computational experiments support the findings of previous studies
where the rheology of a slowly deforming water-saturated granular bed in the
steady state generally conforms to the rate-independent plastic rheology.
Before this so-called critical state, deformation is in many cases accompanied
by volumetric changes as grain rearrangement in active shear zones changes the
local porosity. For previously consolidated beds porosity
increases can cause local pore-pressure decline, dependent on till
permeability and shear rate. We observe that the pore-water pressure reduction
strengthens inter-granular contacts, which results in increased shear strength
of the granular material. In contrast, weakening takes place when shear
deformation causes consolidation of dilated sediments or during rapid fabric
development. Both processes of strengthening and weakening depend inversely on
the sediment permeability and are transient phenomena tied to the porosity
changes during the early stages of shear.
<br><br>
We find that the transient strengthening and weakening in turn influences the
distribution of shear strain in the granular bed. Dilatant strengthening has
the ability to distribute strain during early deformation to large depths, if
sediment dilatancy causes the water pressure at the ice–bed interface to
decline. Oppositely, if the ice–bed interface is hydrologically stable the
strengthening process is minimal and instead causes shallow deformation. The
depth of deformation in subglacial beds thus seems to be governed by not only
local grain and pore-water feedbacks but also larger-scale hydrological
properties at the ice base
Spin injection from Co2MnGa into an InGaAs quantum well
We have demonstrated spin injection from a full Heusler alloy Co2MnGa thin film into a (100) InGaAs quantum well in a semiconductor light-emitting diode structure at a temperature of 5 K. The detection is performed in the oblique Hanle geometry, allowing quantification of the effective spin lifetime and spin detection efficiency (22 +/- 4%). This work builds on existing studies on off-stoichiometric Heusler injectors into similar light-emitting-diode structures. The role of injector stoichiometry can therefore be quantitatively assessed with the result that the spin injection efficiency increases by a factor of approximately 2 as compared with an off-stoichiometric Co2.4Mn1.6Ga injector. (C) 2008 American Institute of Physics
Recommended from our members
Characterization of Intact Proviruses in Blood and Lymph Node from HIV-Infected Individuals Undergoing Analytical Treatment Interruption.
The role of lymphoid tissue as a potential source of HIV-1 rebound following interruption of antiretroviral therapy (ART) is uncertain. To address this issue, we compared the latent viruses obtained from CD4+ T cells in peripheral blood and lymph nodes to viruses emerging during treatment interruption. Latent viruses were characterized by sequencing near-full-length (NFL) proviral DNA and env from viral outgrowth assays (VOAs). Five HIV-1-infected individuals on ART were studied, four of whom participated in a clinical trial of a TLR9 agonist that included an analytical treatment interruption. We found that 98% of intact or replication-competent clonal sequences overlapped between blood and lymph node. In contrast, there was no overlap between 205 latent reservoir and 125 rebound sequences in the four individuals who underwent treatment interruption. However, rebound viruses could be accounted for by recombination. The data suggest that CD4+ T cells carrying latent viruses circulate between blood and lymphoid tissues in individuals on ART and support the idea that recombination may play a role in the emergence of rebound viremia.IMPORTANCE HIV-1 persists as a latent infection in CD4+ T cells that can be found in lymphoid tissues in infected individuals during ART. However, the importance of this tissue reservoir and its contribution to viral rebound upon ART interruption are not clear. In this study, we sought to compare latent HIV-1 from blood and lymph node CD4+ T cells from five HIV-1-infected individuals. Further, we analyzed the contribution of lymph node viruses to viral rebound. We observed that the frequencies of intact proviruses were the same in blood and lymph node. Moreover, expanded clones of T cells bearing identical proviruses were found in blood and lymph node. These latent reservoir sequences did not appear to be the direct origin of rebound virus. Instead, latent proviruses were found to contribute to the rebound compartment by recombination
Nickel oxide reduction studied by environmental TEM and in situ XRD
Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 - August 2, 201
A web of stakeholders and strategies: A case of broadband diffusion in South Korea
When a new technology is launched, its diffusion becomes an issue of importance. There are various stakeholders that influence diffusion. The question that remains to be determined is their identification and roles. This paper outlines how the strategies pursued by a government acting as the key stakeholder affected the diffusion of a new technology. The analysis is based on a theoretical framework derived from innovation diffusion and stakeholder theories. The empirical evidence comes from a study of broadband development in South Korea. A web of stakeholders and strategies is drawn in order to identify the major stakeholders involved and highlight their relations. The case of South Korea offers implications for other countries that are pursuing broadband diffusion strategies
- …