1,070 research outputs found

    Two-step stabilization of orbital order and the dynamical frustration of spin in the model charge-transfer insulator KCuF3

    Full text link
    We report a combined experimental and theoretical study of KCuF3, which offers - because of this material's relatively simple lattice structure and valence configuration (d9, i.e., one hole in the d-shell) - a particularly clear view of the essential role of the orbital degree of freedom in governing the dynamical coupling between the spin and lattice degrees of freedom. We present Raman and x-ray scattering evidence that the phase behaviour of KCuF3 is dominated above the Neel temperature (T_N = 40 K) by coupled orbital/lattice fluctuations that are likely associated with rotations of the CuF6 octahedra, and we show that these orbital fluctuations are interrupted by a static structural distortion that occurs just above T_N. A detailed model of the orbital and magnetic phases of KCuF3 reveals that these orbital fluctuations - and the related frustration of in-plane spin-order-are associated with the presence of nearly degenerate low-energy spin-orbital states that are highly susceptible to thermal fluctuations over a wide range of temperatures. A striking implication of these results is that the ground state of KCuF3 at ambient pressure lies near a quantum critical point associated with an orbital/spin liquid phase that is obscured by emergent Neel ordering of the spins; this exotic liquid phase might be accessible via pressure studies.Comment: 13 pages, 3 figure

    Introduction to the functional RG and applications to gauge theories

    Get PDF
    These lectures contain an introduction to modern renormalization group (RG) methods as well as functional RG approaches to gauge theories. In the first lecture, the functional renormalization group is introduced with a focus on the flow equation for the effective average action. The second lecture is devoted to a discussion of flow equations and symmetries in general, and flow equations and gauge symmetries in particular. The third lecture deals with the flow equation in the background formalism which is particularly convenient for analytical computations of truncated flows. The fourth lecture concentrates on the transition from microscopic to macroscopic degrees of freedom; even though this is discussed here in the language and the context of QCD, the developed formalism is much more general and will be useful also for other systems.Comment: 60 pages, 14 figures, Lectures held at the 2006 ECT* School "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Trento, Ital

    Super-GZK Photons from Photon-Axion Mixing

    Full text link
    We show that photons with energies above the GZK cutoff can reach us from very distant sources if they mix with light axions in extragalactic magnetic fields. The effect which enables this is the conversion of photons into axions, which are sufficiently weakly coupled to travel large distances unimpeded. These axions then convert back into high energy photons close to the Earth. We show that photon-axion mixing facilitates the survival of super-GZK photons most efficiently with a photon-axion coupling scale of order 10^11 GeV, which is in the same range as the scale for the photon-axion mixing explanation for the dimming of supernovae without cosmic acceleration. We discuss possible observational consequences of this effect.Comment: 17 pages, 5 figures. Published versio

    Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex

    Get PDF
    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences

    The neural basis of video gaming

    Get PDF
    Video game playing is a frequent recreational activity. Previous studies have reported an involvement of dopamine-related ventral striatum. However, structural brain correlates of video game playing have not been investigated. On magnetic resonance imaging scans of 154 14-year-olds, we computed voxel-based morphometry to explore differences between frequent and infrequent video game players. Moreover, we assessed the Monetary Incentive Delay (MID) task during functional magnetic resonance imaging and the Cambridge Gambling Task (CGT). We found higher left striatal grey matter volume when comparing frequent against infrequent video game players that was negatively correlated with deliberation time in CGT. Within the same region, we found an activity difference in MID task: frequent compared with infrequent video game players showed enhanced activity during feedback of loss compared with no loss. This activity was likewise negatively correlated with deliberation time. The association of video game playing with higher left ventral striatum volume could reflect altered reward processing and represent adaptive neural plasticity

    HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.

    Get PDF
    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders

    Validation of the spiritual distress assessment tool in older hospitalized patients

    Get PDF
    ABSTRACT:¦BACKGROUND: The Spiritual Distress Assessment Tool (SDAT) is a 5-item instrument developed to assess unmet spiritual needs in hospitalized elderly patients and to determine the presence of spiritual distress. The objective of this study was to investigate the SDAT psychometric properties.¦METHODS: This cross-sectional study was performed in a Geriatric Rehabilitation Unit. Patients (N = 203), aged 65 years and over with Mini Mental State Exam score ≥ 20, were consecutively enrolled over a 6-month period. Data on health, functional, cognitive, affective and spiritual status were collected upon admission. Interviews using the SDAT (score from 0 to 15, higher scores indicating higher distress) were conducted by a trained chaplain. Factor analysis, measures of internal consistency (inter-item and item-to-total correlations, Cronbach α), and reliability (intra-rater and inter-rater) were performed. Criterion-related validity was assessed using the Functional Assessment of Chronic Illness Therapy-Spiritual well-being (FACIT-Sp) and the question "Are you at peace?" as criterion-standard. Concurrent and predictive validity were assessed using the Geriatric Depression Scale (GDS), occurrence of a family meeting, hospital length of stay (LOS) and destination at discharge.¦RESULTS: SDAT scores ranged from 1 to 11 (mean 5.6 ± 2.4). Overall, 65.0% (132/203) of the patients reported some spiritual distress on SDAT total score and 22.2% (45/203) reported at least one severe unmet spiritual need. A two-factor solution explained 60% of the variance. Inter-item correlations ranged from 0.11 to 0.41 (eight out of ten with P < 0.05). Item-to-total correlations ranged from 0.57 to 0.66 (all P < 0.001). Cronbach α was acceptable (0.60). Intra-rater and inter-rater reliabilities were high (Intraclass Correlation Coefficients ranging from 0.87 to 0.96). SDAT correlated significantly with the FACIT-Sp, "Are you at peace?", GDS (Rho -0.45, -0.33, and 0.43, respectively, all P < .001), and LOS (Rho 0.15, P = .03). Compared with patients showing no severely unmet spiritual need, patients with at least one severe unmet spiritual need had higher odds of occurrence of a family meeting (adjOR 4.7, 95%CI 1.4-16.3, P = .02) and were more often discharged to a nursing home (13.3% vs 3.8%; P = .027).¦CONCLUSIONS: SDAT has acceptable psychometrics properties and appears to be a valid and reliable instrument to assess spiritual distress in elderly hospitalized patients
    corecore