464 research outputs found
Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson’s disease
This study aimed to investigate the spatiotemporal changes in neuromelanin-sensitive MRI signal in the substantia nigra and their relation to clinical scores of disease severity in patients with early or progressing Parkinson’s disease and patients with idiopathic rapid eye movement sleep behaviour disorder (iRBD) exempt of Parkinsonian signs compared to healthy control subjects. Longitudinal T1-weighted anatomical and neuromelanin-sensitive MRI was performed in two cohorts, including patients with iRBD, patients with early or progressing Parkinson’s disease, and control subjects. Based on the aligned substantia nigra segmentations using a study-specific brain anatomical template, parametric maps of the probability of a voxel belonging to the substantia nigra were calculated for patients with various degrees of disease severity and controls. For each voxel in the substantia nigra, probability map of controls, correlations between signal-to-noise ratios on neuromelanin-sensitive MRI in patients with iRBD and Parkinson’s disease and clinical scores of motor disability, cognition and mood/behaviour were calculated. Our results showed that in patients, compared to the healthy control subjects, the volume of the substantia nigra was progressively reduced for increasing disease severity. The neuromelanin signal changes appeared to start in the posterolateral motor areas of the substantia nigra and then progressed to more medial areas of this region. The ratio between the volume of the substantia nigra in patients with Parkinson’s disease relative to the controls was best fitted by a mono-exponential decay. Based on this model, the pre-symptomatic phase of the disease started at 5.3 years before disease diagnosis, and 23.1% of the substantia nigra volume was lost at the time of diagnosis, which was in line with previous findings using post-mortem histology of the human substantia nigra and radiotracer studies of the human striatum. Voxel-wise patterns of correlation between neuromelanin-sensitive MRI signal-to-noise ratio and motor, cognitive and mood/behavioural clinical scores were localized in distinct regions of the substantia nigra. This localization reflected the functional organization of the nigrostriatal system observed in histological and electrophysiological studies in non-human primates (motor, cognitive and mood/behavioural domains). In conclusion, neuromelanin-sensitive MRI enabled us to assess voxel-wise modifications of substantia nigra’s morphology in vivo in humans, including healthy controls, patients with iRBD and patients with Parkinson’s disease, and identify their correlation with nigral function across all motor, cognitive and behavioural domains. This insight could help assess disease progression in drug trials of disease modification
A precision medicine initiative for Alzheimer's disease: the road ahead to biomarker-guided integrative disease modeling
After intense scientific exploration and more than a decade of failed trials, Alzheimer’s disease (AD) remains a fatal global epidemic. A traditional research and drug development paradigm continues to target heterogeneous late-stage clinically phenotyped patients with single 'magic bullet' drugs. Here, we propose that it is time for a paradigm shift towards the implementation of precision medicine (PM) for enhanced risk screening, detection, treatment, and prevention of AD. The overarching structure of how PM for AD can be achieved will be provided through the convergence of breakthrough technological advances, including big data science, systems biology, genomic sequencing, blood-based biomarkers, integrated disease modeling and P4 medicine. It is hypothesized that deconstructing AD into multiple genetic and biological subsets existing within this heterogeneous target population will provide an effective PM strategy for treating individual patients with the specific agent(s) that are likely to work best based on the specific individual biological make-up.
The Alzheimer’s Precision Medicine Initiative (APMI) is an international collaboration of leading interdisciplinary clinicians and scientists devoted towards the implementation of PM in Neurology, Psychiatry and Neuroscience. It is hypothesized that successful realization of PM in AD and other neurodegenerative diseases will result in breakthrough therapies, such as in oncology, with optimized safety profiles, better responder rates and treatment responses, particularly through biomarker-guided early preclinical disease-stage clinical trials
Estradiol and testosterone levels in patients undergoing partial hepatectomy - A possible signal for hepatic regeneration?
In five adult male patients undergoing a 40-60% partial hepatectomy, serum sex hormone levels before and after hepatic resection were determined. Blood was drawn immediately prior to each surgical procedure and at specified time points postoperatively. Compared to hormone levels found prior to surgery, following major hepatic resection, estradiol levels increase at 24 and 48 hr, while testosterone levels decline, being significantly reduced at 96 and 144 hr. These data demonstrate that adult males who undergo a 40-60% partial hepatectomy experience alterations in their sex hormone levels similar to those observed in male rats following a 70% hepatectomy. These changes in sex hormone levels have been associated in animals with an alteration of the sex hormone receptor status of the liver that is thought to participate in the initiation of the regenerative response. These studies suggest, but do not prove, that in man, as in the case of the rat, sex hormones may participate in the initiation of or at least modulate in part the regenerative response that occurs following a major hepatic resection. © 1989 Plenum Publishing Corporation
Levodopa-induced dyskinesia in Parkinson's disease: Insights from cross-cohort prognostic analysis using machine learning
peer reviewedBackground
Prolonged levodopa treatment in Parkinson's disease (PD) often leads to motor complications, including levodopa-induced dyskinesia (LID). Despite continuous levodopa treatment, some patients do not develop LID symptoms, even in later stages of the disease.
Objective
This study explores machine learning (ML) methods using baseline clinical characteristics to predict the development of LID in PD patients over four years, across multiple cohorts.
Methods
Using interpretable ML approaches, we analyzed clinical data from three independent longitudinal PD cohorts (LuxPARK, n = 356; PPMI, n = 484; ICEBERG, n = 113) to develop cross-cohort prognostic models and identify potential predictors for the development of LID. We examined cohort-specific and shared predictive factors, assessing model performance and stability through cross-validation analyses.
Results
Consistent cross-validation results for single and multiple cohort analyses highlighted the effectiveness of the ML models and identified baseline clinical characteristics with significant predictive value for the LID prognosis in PD. Predictors positively correlated with LID include axial symptoms, freezing of gait, and rigidity in the lower extremities. Conversely, the risk of developing LID was inversely associated with the occurrence of resting tremors, higher body weight, later onset of PD, and visuospatial abilities.
Conclusions
This study presents interpretable ML models for dyskinesia prognosis with significant predictive power in cross-cohort analyses. The models may pave the way for proactive interventions against dyskinesia in PD by optimizing levodopa dosing regimens and adjunct treatments with dopamine agonists or MAO-B inhibitors, and by employing non-pharmacological interventions such as dietary adjustments affecting levodopa absorption for high-risk LID patients.U-AGR-7200 - INTER/22/17104370/RECAST - GLAAB Enrico3. Good health and well-bein
Inherited renal tubular dysgenesis: the first patients surviving the neonatal period
Renal tubular dysgenesis (RTD) is a clinical disorder either acquired during fetal development or inherited as an autosomal recessive condition. Inherited RTD is caused by mutations in the genes encoding the components of the renin-angiotensin system angiotensinogen, renin, angiotensin-converting enzyme and angiotensin II receptor type 1. Inherited RTD is characterized by early onset oligohydramnios, skull ossification defects, preterm birth and neonatal pulmonary and renal failure. The histological hallmark is the absence or poor development of proximal tubules. So far, all patients died either in utero or shortly after birth. We report the first patients with inherited RTD surviving the neonatal period and still being alive. Genetic and functional analysis of the renin-angiotensin system contributes to the diagnosis of RTD. In conclusion, the clinical diagnosis of inherited RTD is easily missed after birth without renal biopsy or information on affected family members. Genetic and functional analysis of the renin-angiotensin system contributes to correct diagnosis
Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial
A randomized, double-blind, placebo-controlled, 52-week study (no. NCT03068468) evaluated gosuranemab, an anti-tau monoclonal antibody, in the treatment of progressive supranuclear palsy (PSP). In total, 486 participants dosed were assigned to either gosuranemab (n = 321) or placebo (n = 165). Efficacy was not demonstrated on adjusted mean change of PSP Rating Scale score at week 52 between gosuranemab and placebo (10.4 versus 10.6, P = 0.85, primary endpoint), or at secondary endpoints, resulting in discontinuation of the open-label, long-term extension. Unbound N-terminal tau in cerebrospinal fluid decreased by 98% with gosuranemab and increased by 11% with placebo (P < 0.0001). Incidences of adverse events and deaths were similar between groups. This well-powered study suggests that N-terminal tau neutralization does not translate into clinical efficacy
D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses.
Convergent dopamine and glutamate signalling onto the extracellular signal-regulated kinase (ERK) pathway in medium spiny neurons (MSNs) of the striatum controls psychostimulant-initiated adaptive processes underlying long-lasting behavioural changes. We hypothesised that the physical proximity of dopamine D1 (D1R) and glutamate NMDA (NMDAR) receptors, achieved through the formation of D1R/NMDAR complexes, may act as a molecular bridge that controls the synergistic action of dopamine and glutamate on striatal plasticity and behavioural responses to drugs of abuse. We found that concomitant stimulation of D1R and NMDAR drove complex formation between endogenous D1R and the GluN1 subunit of NMDAR. Conversely, preventing D1R/GluN1 association with a cell-permeable peptide (TAT-GluN1C1) left individual D1R and NMDAR-dependent signalling intact, but prevented D1R-mediated facilitation of NMDAR-calcium influx and subsequent ERK activation. Electrophysiological recordings in striatal slices from mice revealed that D1R/GluN1 complexes control the D1R-dependent enhancement of NMDAR currents and long-term potentiation in D1R-MSN. Finally, intra-striatal delivery of TAT-GluN1C1 did not affect acute responses to cocaine but reduced behavioural sensitization. Our findings uncover D1R/GluN1 complexes as a major substrate for the dopamine-glutamate interaction in MSN that is usurped by addictive drugs to elicit persistent behavioural alterations. They also identify D1R/GluN1 complexes as molecular targets with a therapeutic potential for the vast spectrum of psychiatric diseases associated with an imbalance between dopamine and glutamate transmission
PTX3 genetic variations affect the risk of Pseudomonas aeruginosa airway colonization in cystic fibrosis patients
Cystic fibrosis (CF) is a common life-threatening autosomal recessive disorder in the Caucasian population, and the gene responsible is the CF transmembrane conductance regulator (CFTR). Patients with CF have repeated bacterial infection of the airways caused by Pseudomonas aeruginosa (PA), which is one of the predominant pathogen, and endobronchial chronic infection represents a major cause of morbidity and mortality. Pentraxin 3 (PTX3) is a gene that encodes the antimicrobial protein, PTX3, which is believed to have an important role in innate immunity of lung. To address the role of PTX3 in the risk of PA lung colonization, we investigated five single nucleotide polymorphisms of PTX3 gene in 172 Caucasian CF patients who were homozygous for the F508del mutation. We observed that PTX3 haplotype frequencies were significantly different between patients with PA colonization, as compared with noncolonized patients. Moreover, a protective effect was found in association with a specific haplotype (odds ratio 0.524). Our data suggest that variations within PTX3 affect lung colonization of Pseudomonas in patients with CF
- …