3,355 research outputs found

    Constraint handling strategies in Genetic Algorithms application to optimal batch plant design

    Get PDF
    Optimal batch plant design is a recurrent issue in Process Engineering, which can be formulated as a Mixed Integer Non-Linear Programming(MINLP) optimisation problem involving specific constraints, which can be, typically, the respect of a time horizon for the synthesis of various products. Genetic Algorithms constitute a common option for the solution of these problems, but their basic operating mode is not always wellsuited to any kind of constraint treatment: if those cannot be integrated in variable encoding or accounted for through adapted genetic operators, their handling turns to be a thorny issue. The point of this study is thus to test a few constraint handling techniques on a mid-size example in order to determine which one is the best fitted, in the framework of one particular problem formulation. The investigated methods are the elimination of infeasible individuals, the use of a penalty term added in the minimized criterion, the relaxation of the discrete variables upper bounds, dominancebased tournaments and, finally, a multiobjective strategy. The numerical computations, analysed in terms of result quality and of computational time, show the superiority of elimination technique for the former criterion only when the latter one does not become a bottleneck. Besides, when the problem complexity makes the random location of feasible space too difficult, a single tournament technique proves to be the most efficient one

    Computing the set of Epsilon-efficient solutions in multiobjective space mission design

    Get PDF
    In this work, we consider multiobjective space mission design problems. We will start from the need, from a practical point of view, to consider in addition to the (Pareto) optimal solutions also nearly optimal ones. In fact, extending the set of solutions for a given mission to those nearly optimal significantly increases the number of options for the decision maker and gives a measure of the size of the launch windows corresponding to each optimal solution, i.e., a measure of its robustness. Whereas the possible loss of such approximate solutions compared to optimal—and possibly even ‘better’—ones is dispensable. For this, we will examine several typical problems in space trajectory design—a biimpulsive transfer from the Earth to the asteroid Apophis and two low-thrust multigravity assist transfers—and demonstrate the possible benefit of the novel approach. Further, we will present a multiobjective evolutionary algorithm which is designed for this purpose

    On the detection of nearly optimal solutions in the context of single-objective space mission design problems

    Get PDF
    When making decisions, having multiple options available for a possible realization of the same project can be advantageous. One way to increase the number of interesting choices is to consider, in addition to the optimal solution x*, also nearly optimal or approximate solutions; these alternative solutions differ from x* and can be in different regions – in the design space – but fulfil certain proximity to its function value f(x*). The scope of this article is the efficient computation and discretization of the set E of e–approximate solutions for scalar optimization problems. To accomplish this task, two strategies to archive and update the data of the search procedure will be suggested and investigated. To make emphasis on data storage efficiency, a way to manage significant and insignificant parameters is also presented. Further on, differential evolution will be used together with the new archivers for the computation of E. Finally, the behaviour of the archiver, as well as the efficiency of the resulting search procedure, will be demonstrated on some academic functions as well as on three models related to space mission design

    Artificial Immune System for Solving Global Optimization Problems

    Get PDF
    In this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed model is used for global optimization problems. The model operates on four populations: Virgins, Effectors (CD4 and CD8) and Memory. Each of them has a different role, representation and procedures. We validate our proposed approach with a set of test functions taken from the specialized literature, we also compare our results with the results obtained by different bio-inspired approaches and we statistically analyze the results gotten by our approach.Fil: Aragon, Victoria Soledad. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo En Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; ArgentinaFil: Esquivel, Susana C.. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Coello Coello, Carlos A.. CINVESTAV-IPN; Méxic

    About Designing an Observer Pattern-Based Architecture for a Multi-objective Metaheuristic Optimization Framework

    Get PDF
    Multi-objective optimization with metaheuristics is an active and popular research field which is supported by the availability of software frameworks providing algorithms, benchmark problems, quality indicators and other related components. Most of these tools follow a monolithic architecture that frequently leads to a lack of flexibility when a user intends to add new features to the included algorithms. In this paper, we explore a different approach by designing a component-based architecture for a multi-objective optimization framework based on the observer pattern. In this architecture, most of the algorithmic components are observable entities that naturally allows to register a number of observers. This way, a metaheuristic is composed of a set of observable and observer elements, which can be easily extended without requiring to modify the algorithm. We have developed a prototype of this architecture and implemented the NSGA-II evolutionary algorithm on top of it as a case study. Our analysis confirms the improvement of flexibility using this architecture, pointing out the requirements it imposes and how performance is affected when adopting it.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    VSD-MOEA: A Dominance-Based Multiobjective Evolutionary Algorithm with Explicit Variable Space Diversity Management

    Get PDF
    Most state-of-the-art Multiobjective Evolutionary Algorithms (moeas) promote the preservation of diversity of objective function space but neglect the diversity of decision variable space. The aim of this article is to show that explicitly managing the amount of diversity maintained in the decision variable space is useful to increase the quality of moeas when taking into account metrics of the objective space. Our novel Variable Space Diversity-based MOEA (vsd-moea) explicitly considers the diversity of both decision variable and objective function space. This information is used with the aim of properly adapting the balance between exploration and intensification during the optimization process. Particularly, at the initial stages, decisions made by the approach are more biased by the information on the diversity of the variable space, whereas it gradually grants more importance to the diversity of objective function space as the evolution progresses. The latter is achieved through a novel density estimator. The new method is compared with state-of-art moeas using several benchmarks with two and three objectives. This novel proposal yields much better results than state-of-the-art schemes when considering metrics applied on objective function space, exhibiting a more stable and robust behavior

    A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts

    Get PDF
    Copyright © 2005 Springer Verlag. The final publication is available at link.springer.com3rd International Conference, EMO 2005, Guanajuato, Mexico, March 9-11, 2005. ProceedingsBook title: Evolutionary Multi-Criterion OptimizationIn extending the Particle Swarm Optimisation methodology to multi-objective problems it is unclear how global guides for particles should be selected. Previous work has relied on metric information in objective space, although this is at variance with the notion of dominance which is used to assess the quality of solutions. Here we propose methods based exclusively on dominance for selecting guides from a non-dominated archive. The methods are evaluated on standard test problems and we find that probabilistic selection favouring archival particles that dominate few particles provides good convergence towards and coverage of the Pareto front. We demonstrate that the scheme is robust to changes in objective scaling. We propose and evaluate methods for confining particles to the feasible region, and find that allowing particles to explore regions close to the constraint boundaries is important to ensure convergence to the Pareto front

    Evolving temporal fuzzy association rules from quantitative data with a multi-objective evolutionary algorithm

    Get PDF
    A novel method for mining association rules that are both quantitative and temporal using a multi-objective evolutionary algorithm is presented. This method successfully identifies numerous temporal association rules that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy association rules and the approach of using a hybridisation of a multi-objective evolutionary algorithm with fuzzy sets. Results show the ability of a multi-objective evolutionary algorithm (NSGA-II) to evolve multiple target itemsets that have been augmented into synthetic datasets

    Dynamic Multi-Objective Optimization With jMetal and Spark: a Case Study

    Get PDF
    Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore