35 research outputs found

    Comparative antioxidant effects of lycopene, apo-10'-lycopenoic acid and apo-14'-lycopenoic acid in human macrophages exposed to H2O2 and cigarette smoke extract.

    No full text
    Much of the beneficial effects of tomato lycopene in the prevention of chronic diseases has been attributed to its antioxidant properties, which could be mediated by its metabolites and/or oxidation products. However, the biological functions of these lycopene derivatives remain still unknown. In the present study, we evaluated and compared the antioxidant efficacy of the lycopene eccentric cleavage products apo-10'-lycopenoic acid and apo-14'-lycopenoic acid in counteracting the oxidative effects of H(2)O(2) and cigarette smoke extract (CSE) in THP-1 macrophages. Both apo-10'-lycopenoic acid and apo-14'-lycopenoic acid were able to inhibit spontaneous and H(2)O(2)-induced ROS production in a dose-dependent manner. Such an effect was accompanied by an inhibition of MAPK phosphorylation, by NF-\u3baB inactivation, and by inhibition of hsp-70 and hsp-90 expressions. Both apo-lycopenoic acids also decreased CSE-induced ROS production, 8-OHdG formation and reduced the increase in NOX-4 and COX-2 expressions caused by CSE. However, in both the models of oxidative stress, apo-14'-lycopenoic acid was much more potent as an antioxidant than apo-10'-lycopenoic acid, showing antioxidant properties similar to lycopene. These data strongly suggest that apo-lycopenoic acids, and particularly apo-14'-lycopenoic acid, may mediate some of the antioxidant functions of lycopene in cells

    Apo-10'-lycopenoic acid impacts adipose tissue biology via the retinoic acid receptors.

    No full text
    International audienceApo-10'-lycopenoic acid (apo-10-lycac), a metabolite of lycopene, has been shown to possess potent biological activities, notably via the retinoic acid receptors (RAR). In the current study, its impact on adipose tissue and adipocytes was studied. In microarray experiments, the set of genes regulated by apo-10-lycac treatments was compared to the set of genes regulated by all-trans retinoic acid (ATRA), the natural ligand of RAR, in adipocytes. Approximately 27.5% of the genes regulated by apo-10-lycac treatments were also regulated by ATRA, suggesting a common ability in terms of gene expression modulation, possibly via RAR transactivation. The physiological impact of apo-10-lycac on adipose tissue biology was evaluated. If it had no effect on adipogenesis in the 3T3-L1 cell model, this metabolite may have a preventative effect against inflammation, by preventing the increase in the inflammatory markers, interleukin 6 and interleukin 1ÎČ in various dedicated models. The ability of apo-10-lycac to transactivate the RAR and to modulate the transcription of RAR target gene was brought in vivo in adipose tissue. While apo-10-lycac was not detected in adipose tissue, a metabolite with a molecular weight with 2 Da larger mass was detected, suggesting that a dihydro-apo-10'-lycopenoic acid, may be present in adipose tissue and that this compound could active or may lead to further active RAR-activating apo-10-lycac metabolites. Since apo-10-lycac treatments induce anti-inflammatory effects in adipose tissue but do not inhibit adipogenesis, we propose that apo-10-lycac treatments and its potential active metabolites in WAT may be considered for prevention strategies relevant for obesity-associated pathologies
    corecore