459 research outputs found

    Equation of Motion for the Solvent Polarization Apparent Charges in the Polarizable Continuum Model: Application to Time-Dependent CI

    Full text link
    The dynamics of the electrons for a molecule in solution is coupled to the dynamics of its polarizable environment, i.e., the solvent. To theoretically investigate such electronic dynamics, we have recently developed equations of motion (EOM) for the apparent solvent polarization charges that generate the reaction field in the Polarizable Continuum Model (PCM) for solvation and we have coupled them to a real-time time-dependent density functional theory (RT TDDFT) description of the solute [Corni et al. J. Phys. Chem. A 119, 5405 (2014)]. Here we present an extension of the EOM-PCM approach to a Time-Dependent Configuration Interaction (TD CI) description of the solute dynamics, which is free from the qualitative artifacts of RT TDDFT in the adiabatic approximation. As tests of the developed approach, we investigate the solvent Debye relaxation after an electronic excitation of the solute obtained either by a π\pi pulse of light or by assuming the idealized sudden promotion to the excited state. Moreover, we present EOM for the Onsager solvation model and we compare the results with PCM. The developed approach provides qualitatively correct real-time evolutions and is promising as a general tool to investigate the electron dynamics elicited by external electromagnetic fields for molecules in solution.Comment: This is the final peer-reviewed manuscript accepted for publication in The Journal of Chemical Physics. Copyright by AIP, the final published version can be found at http://scitation.aip.org/content/aip/journal/jcp/146/6/10.1063/1.497562

    Numerical Modeling and Simulation of Melting Phenomena for Freeze Valve Analysis in Molten Salt Reactors

    Get PDF
    In recent years, molten salt reactors (MSRs) have gained new momentum thanks to their potential for innovation in the nuclear industry, and several studies on their compliance with all the expected safety features are currently underway. In terms of passive safety, a strategy currently envisaged in accidental scenarios is to drain by gravity the molten salt, which acts both as fuel and coolant, in an emergency draining tank, ensuring both a subcritical geometry and proper cooling. To activate the draining system, a freeze plug, made of the same salt used in the core, is expected to open when the temperature in the core reaches high values. Up to this point, the freeze valve is still a key concept in the molten salt fast reactor (MSFR), and special attention must be paid to its analysis, given the requirement for passive safety, especially focusing on melting and solidification phenomena related to the molten salt mixture. This work aims to contribute to the macroscale modeling of melting and solidification phenomena relevant to the analysis of the freeze valve behavior. In particular, the focus is on the identification of the numerical models that can be adopted to achieve the quantitative insights needed for the design of the freeze valve. Among the ones available in the literature, the most appropriate models were selected based on a compromise between accuracy and computational efficiency. A critical look at the models allows for a synthetic and consistent formulation of the numerical models and their implementation in the open-source software OpenFOAM. The code was subsequently verified using analytical and numerical solutions already well established in the literature. A good agreement between the results produced by the developed solver and the reference solutions was obtained. In the end, the code was applied to simple case studies related to the freeze valve system, focusing on recognizing whether the developed code can model physical phenomena that can occur in a freeze valve. The results of the simulations are encouraging and show that the code can be used to model single-region melting or solidification problems. As such, this work constitutes a starting point for further development of the code, intending to achieve better quantitative predictions for the design of a freeze valve

    On the need for multi-dimensional models for the safety analysis of (fast-spectrum) Molten Salt Reactors

    Get PDF
    This paper aims at characterizing the impact of adopting numerical models with different dimensionalities on the predicted behavior of fast-spectrum Molten Salt Reactors (MSRs). The study encompasses 1-D, 2-D, and 3-D representations of thermal-hydraulics and precursor transport/diffusion, along with spatial and point kinetics models for neutronics. We evaluate the accuracy of each model based on steady-state results and on the reactor response to 2 different transient initiators. The findings emphasize the significance of utilizing a 3-D representation with accurate thermal-hydraulics modeling, and with either spatial kinetics or carefully calibrated point kinetics incorporating a spatial description of precursors transport. 2-D and 1-D models can reproduce main trends and remain valuable tools for e.g. reactor design, control-oriented studies or uncertainty quantification. However, proper calibration of these models is needed and the user should be aware that alterations in flow patterns could jeopardize model calibration and hide first-order local effects

    1D modelling and preliminary analysis of the coupled DYNASTY–eDYNASTY natural circulation loop

    Get PDF
    In the continuous strive to improve the safety of current-generation and next-generation nuclear power plants, natural circulation can be used to design passive safety systems to remove the decay heat during the shutdown. The Molten Salt Fast Reactor (MSFR) is a peculiar type of Gen-IV nuclear facility, where the fluid fuel is homogeneously mixed with the coolant. This design leads to natural circulation in the presence of an internally distributed heat source during the shutdown. Furthermore, to shield the environment from the highly radioactive fuel, an intermediate loop between the primary and the secondary loops, able to operate in natural circulation, is required. To analyze the natural circulation with a distributed heat source and to study the natural circulation of coupled systems and the influence of the intermediate loop on the behaviour of the primary, Politecnico di Milano designed and built the DYNASTY-eDYNASTY facility. The two facilities are coupled with a double-pipe heat exchanger, which siphons heat from DYNASTY and delivers it to the eDYNASTY loop. This work focuses on modelling the coupled DYNASTY-eDYNASTY natural circulation loops using DYMOLA2023((R)), an integrated development environment based on the Modelica Object-Oriented a-causal simulation language. The 1D Modelica approach allows for building highly reusable and flexible models easing the design effort on a complex system such as the DYNASTY-eDYNASTY case without the need to rewrite the whole model from scratch. The coupled models were developed starting from the already-validated single DYNASTY model and the double-pipe heat exchanger coupling. The models were tested during the whole development process, studying the influence of the numerical integration algorithm on the simulation behaviour. A preliminary analysis of both the adiabatic and the heat loss models analyzed the effect of the secondary natural circulation loop on the behaviour of the DYNASTY loop. The simulation results showed that the eDYNASTY loop dampens the behaviour of the primary DYNASTY loop. Furthermore, a parametric analysis of the DYNASTY and the eDYNASTY coolers highlighted the influence of the cooling configuration on the facility's behaviour. Finally, the simulation results identified the most critical aspects of the models in preparation for an experimental comparison

    Modeling and simulation of nuclear hybrid energy systems architectures

    Get PDF
    The transition toward a low-carbon energy system and the increasing penetration of variable renewable energy (VRE) sources translate into a pressing need for dispatchable and low-carbon power sources. Nuclear hybrid energy systems (NHES) exploit the synergies between nuclear power and other energy sources together with energy storage devices and a variety of electric and non-electric applications. The expected benefits range from a high flexibility being able to supporting an increasing penetration of the VRE while complying with the grid demand and constraints to an increased profitability brought by the production of commodities beyond electricity (e.g., hydrogen, heat, etc.). A dedicated framework must be developed to evaluate different NHES configurations, particularly with regard to the complex interconnections among the tightly coupled components. In this work, illustrative examples of NHES components were selected and modeled with the object-oriented modeling language Modelica and implemented in the Dymola simulation environment. The technologies considered in this study are a Small Modular Reactor (SMR) based on pressurized water technology, a thermal energy storage (TES) system, and an alkaline electrolyzer for hydrogen production. The dynamic models are then collected in a new Modelica library and assembled into a variety of NHES topologies using a plug-and-play approach. The time-dependent behavior of the NHES layout can be simulated under different operational contexts, enabling the monitoring of key process variables, supporting system design, exploring alternative control strategies, and analyzing different scenarios. The NHESs are investigated in two exemplary scenarios – one representing typical load conditions and the other featuring high VRE penetration – in order to demonstrate the viability of the proposed approach as an initial effort toward the development of a holistic framework for analyzing NHES. The dynamic models effectively met the analysis requirements, for instance, by tracking the production of commodities throughout each operational transient, which is an essential result for evaluating the performance of NHES. In this regard, efficiency is adopted as the figure of merit to compare the different NHES architectures, with simulation results indicating significant overall efficiency improvements in NHES incorporating TES and using nuclear heat to drive non-electric applications

    Development of an OpenFOAM multiphysics solver for solid fission products transport in the Molten Salt Fast Reactor

    Get PDF
    The analysis of innovative reactor concepts such as the Molten Salt Fast Reactor (MSFR) requires the development of new modeling and simulation tools. In the case of the MSFR, the strong intrinsic coupling between thermal-hydraulics, neutronics and fuel chemistry has led to the adoption of the multiphysics approach as a state-of-the-art paradigm. One of the peculiar aspects of liquid-fuel reactors such as the MSFR is the mobility of fission products (FPs) in the reactor circuit. Some FP species appear in form of solid precipitates carried by the fuel flow and can deposit on reactor boundaries (e.g., heat exchangers), potentially representing design issues related to the degradation of heat exchange performance or radioactive hotspots. The integration of transport models for solid particles in multiphysics codes is therefore relevant for the prediction of deposited fractions. To this aim, we develop a multiphysics solver based on the OpenFOAM library to address the issue of solid fission products transport. Single-phase incompressible thermal hydraulics are coupled with neutron diffusion, and advection-diffusion-decay equations are implemented for fission products concentrations. Particle deposition and precipitation are considered as well. The developed solver is tested on two different MSFR application to showcase the capabilities of the solver in steady-state simulation and to investigate the role of precipitation and turbulence modeling in the determination of particle concentration distributions

    Preliminary Feasibility Study of a Water Space Reactor with an Innovative Reactivity Control System

    Get PDF
    Power limitation represents a major issue within space applications aimed to human settlements on solar system planets. Among these planets, Mars is considered the most attractive because of its nearness to the Earth and the probable presence of minerals which can be used by the settlers to live off the land. In this frame, small size nuclear power plants can be an interesting solution to overcome the energy supply problem. This paper presents a preliminary feasibility study of a 100 kWe self-pressurized water space reactor, with the aim to design a system characterized by compactness, intrinsic safety and simplicity of the main reactor control components. To this end an innovative reactivity control system, based on the control of the primary coolant mass flow rate, was adopted. The introduction of this system in the reactor design required a comprehensive core neutronics analysis in order to properly quantify the effect of the coolant on the reactor behaviour also as a function of the fuel burn-up. Here only the main results of this analysis, concerning neutron flux profiles and multiplication factors, are discussed. Moreover preliminary results on long term reactivity control are presented, showing the possibility to operate the reactor for as long as 7 years with no need of human intervention

    Molecular characterization of Prototheca strains isolated from Italian dairy herds.

    Get PDF
    One hundred sixty-one Prototheca spp. strains isolated from composite milk and barn-surrounding environmental samples (bedding, feces, drinking, or washing water, surface swabs) of 24 Italian dairy herds were characterized by genotype-specific PCR analysis. Overall, 97.2% of strains isolated from composite milk samples were characterized as Prototheca zopfii genotype 2, confirming its role as the main mastitis pathogen, whereas Prototheca blaschkeae was only sporadically isolated (2.8%). Regarding environmental sampling, 84.9% of isolates belonged to P. zopfii genotype 2, 13.2% to P. blaschkeae, and 1.9% to P. zopfii genotype 1. The data herein contradict previous hypotheses about the supposed exclusive role of P. zopfii genotype 2 as the causative agent of protothecal mastitis and, on the contrary, confirm the hypothesis that such pathology could be caused by P. blaschkeae in a few instances
    • …
    corecore