223 research outputs found

    Perceived self-efficacy in coping with cognitive stressors and opioid activation

    Get PDF
    This experiment tested the hypothesis that perceived self-inefficacy in exercising control over cognitive stressors activates endogenous opioid systems. Subjects performed mathematical operations under conditions in which they could exercise full control over the cognitive task demands or in which the cognitive demands strained or exceeded their cognitive capabilities. Subjects with induced high perceived self-efficacy exhibited little stress, whereas those with induced low perceived self-efficacy experienced a high level of stress and autonomic arousal. Subjects were then administered either an inert saline solution or naloxone, an opiate antagonist that blocks the analgesic effects of endogenous opiates, whereupon their level of pain tolerance was measured. The self-efficacious nonstressed subjects gave no evidence of opioid activation. The self-inefficacious stressed subjects were able to withstand increasing amounts of pain stimulation under saline conditions. However, when endogenous opioid mechanisms that control pain were blocked by naloxone, the subjects were unable to bear much pain stimulation. This pattern of changes suggests that the stress-induced analgesia found under the saline condition was mediated by endogenous opioid mechanisms and counteracted by the opiate antagonist

    Recurrences in Driven Quantum Systems

    Full text link
    We consider an initially bound quantum particle subject to an external time-dependent field. When the external field is large, the particle shows a tendency to repeatedly return to its initial state, irrespective of whether the frequency of the field is sufficient for escape from the well. These recurrences, which are absent in a classical calculation, arise from the system evolving primarily like a free particle in the external field.Comment: 10 pages in RevTeX format, with three PS files appende

    Physiological Correlates of Endurance Time Variability during Constant-Workrate Cycling Exercise in Patients with COPD

    Get PDF
    RATIONALE: The endurance time (T(end)) during constant-workrate cycling exercise (CET) is highly variable in COPD. We investigated pulmonary and physiological variables that may contribute to these variations in T(end). METHODS: Ninety-two patients with COPD completed a CET performed at 80% of peak workrate capacity (W(peak)). Patients were divided into tertiles of T(end) [Group 1: <4 min; Group 2: 4-6 min; Group 3: >6 min]. Disease severity (FEV(1)), aerobic fitness (W(peak), peak oxygen consumption [VO2(peak)], ventilatory threshold [VO2(VT)]), quadriceps strength (MVC), symptom scores at the end of CET and exercise intensity during CET (heart rate at the end of CET to heart rate at peak incremental exercise ratio [HR(CET)/HR(peak)]) were analyzed as potential variables influencing T(end). RESULTS: W(peak), VO2(peak), VO2(VT), MVC, leg fatigue at end of CET, and HR(CET)/HR(peak) were lower in group 1 than in group 2 or 3 (p≀0.05). VO2(VT) and leg fatigue at end of CET independently predicted T(end) in multiple regression analysis (r = 0.50, p = 0.001). CONCLUSION: T(end) was independently related to the aerobic fitness and to tolerance to leg fatigue at the end of exercise. A large fraction of the variability in T(end) was not explained by the physiological parameters assessed in the present study. Individualization of exercise intensity during CET should help in reducing variations in T(end) among patients with COPD

    Eicosanoid Release Is Increased by Membrane Destabilization and CFTR Inhibition in Calu-3 Cells

    Get PDF
    The antiinflammatory protein annexin-1 (ANXA1) and the adaptor S100A10 (p11), inhibit cytosolic phospholipase A2 (cPLA2α) by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2α. We first analyzed by plasmon surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1 domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent resistant membranes (DRM) induced by TNF-α. This was concomitant with increased IL-8 synthesis and cPLA2α activation, ultimately resulting in eicosanoid (PGE2 and LTB4) overproduction. DRM destabilizing agent methyl-ÎČ-cyclodextrin induced further cPLA2α activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production. Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-α-induced relocalization to DRM. These results show that (i) CFTR may form a complex with cPLA2α and ANXA1 via interaction with p11, (ii) CFTR inhibition and DRM disruption induce eicosanoid synthesis, and (iii) suggest that the putative cPLA2/ANXA1/p11/CFTR complex may participate in the modulation of the TNF-α-induced production of eicosanoids, pointing to the importance of membrane composition and CFTR function in the regulation of inflammation mediator synthesis

    Anthocyanins, phenols, and antioxidant activity in blackberry juice with plant extracts addition during heating

    Get PDF
    In this work the influence of addition of different plant extracts (olive leaf, green tea, pine bark PE 95%, pine bark PE 5:1, red wine PE 30%, red wine PE 4:1, and bioflavonoids) to blackberry juice during heating (at 30, 50, 70 and 90 °C) on the anthocyanin and phenol contents, polymeric colour, and antioxidant activity was investigated. Also, reaction rate constant, half-lives of degradation, and activation energy were calculated. Control sample was juice without addition of extracts. The highest anthocyanin content at 30 °C was in samples with the addition of olive leaf and green tea. At 90 °C the highest anthocyanin content was measured in samples with the addition of extract of red wine and bioflavonoides. Samples supplemented with the extracts had much higher antioxidant activity in comparison to the control sample. Results showed that at 90 °C the sample with green tea supplementation had the lowest reaction rate constant and the highest half-life. Activation energy ranged from 29 to 44 kJ mol−1

    Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression.

    Get PDF
    Stressful life events produce a state of vulnerability to depression in some individuals. The mechanisms that contribute to vulnerability to depression remain poorly understood. A rat model of intense stress (social defeat (SD), first hit) produced vulnerability to depression in 40% of animals. Only vulnerable animals developed a depression-like phenotype after a second stressful hit (chronic mild stress). We found that this vulnerability to depression resulted from a persistent state of oxidative stress, which was reversed by treatment with antioxidants. This persistent state of oxidative stress was due to low brain-derived neurotrophic factor (BDNF) levels, which characterized the vulnerable animals. We found that BDNF constitutively controlled the nuclear translocation of the master redox-sensitive transcription factor Nrf2, which activates antioxidant defenses. Low BDNF levels in vulnerable animals prevented Nrf2 translocation and consequently prevented the activation of detoxifying/antioxidant enzymes, ultimately resulting in the generation of sustained oxidative stress. Activating Nrf2 translocation restored redox homeostasis and reversed vulnerability to depression. This mechanism was confirmed in Nrf2-null mice. The mice displayed high levels of oxidative stress and were inherently vulnerable to depression, but this phenotype was reversed by treatment with antioxidants. Our data reveal a novel role for BDNF in controlling redox homeostasis and provide a mechanistic explanation for post-stress vulnerability to depression while suggesting ways to reverse it. Because numerous enzymatic reactions produce reactive oxygen species that must then be cleared, the finding that BDNF controls endogenous redox homeostasis opens new avenues for investigation

    HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development.

    Get PDF
    Formation of the lymphatic system requires the coordinated expression of several key regulators: vascular endothelial growth factor C (VEGFC), its receptor FLT4, and a key transcriptional effector, PROX1. Yet, how expression of these signaling components is regulated remains poorly understood. Here, using a combination of genetic and molecular approaches, we identify the transcription factor hematopoietically expressed homeobox (HHEX) as an upstream regulator of VEGFC, FLT4, and PROX1 during angiogenic sprouting and lymphatic formation in vertebrates. By analyzing zebrafish mutants, we found that hhex is necessary for sprouting angiogenesis from the posterior cardinal vein, a process required for lymphangiogenesis. Furthermore, studies of mammalian HHEX using tissue-specific genetic deletions in mouse and knockdowns in cultured human endothelial cells reveal its highly conserved function during vascular and lymphatic development. Our findings that HHEX is essential for the regulation of the VEGFC/FLT4/PROX1 axis provide insights into the molecular regulation of lymphangiogenesis
    • 

    corecore