606 research outputs found
Control of tetrahedral coordination and superconductivity in FeSe0.5Te0.5 thin films
We demonstrate a close relationship between superconductivity and the
dimensions of the Fe-Se(Te) tetrahedron in FeSe0.5Te0.5. This is done by
exploiting thin film epitaxy, which provides controlled biaxial stress, both
compressive and tensile, to distort the tetrahedron. The Se/Te height within
the tetrahedron is found to be of crucial importance to superconductivity, in
agreement with the theoretical proposal that (pi,pi) spin fluctuations promote
superconductivity in Fe superconductors
Spin resonance in the d-wave superconductor CeCoIn5
Neutron scattering is used to probe antiferromagnetic spin fluctuations in
the d-wave heavy fermion superconductor CeCoIn (T=2.3 K).
Superconductivity develops from a state with slow (=0.3 0.15
meV) commensurate (=(1/2,1/2,1/2)) antiferromagnetic spin
fluctuations and nearly isotropic spin correlations. The characteristic
wavevector in CeCoIn is the same as CeIn but differs from the
incommensurate wavevector measured in antiferromagnetically ordered
CeRhIn. A sharp spin resonance ( meV) at
= 0.60 0.03 meV develops in the superconducting state removing spectral
weight from low-energy transfers. The presence of a resonance peak is
indicative of strong coupling between f-electron magnetism and
superconductivity and consistent with a d-wave gap order parameter satisfying
.Comment: (5 pages, 4 figures, to be published in Phys. Rev. Lett.
Field-driven phase transitions in a quasi-two-dimensional quantum antiferromagnet
We report magnetic susceptibility, specific heat, and neutron scattering
measurements as a function of applied magnetic field and temperature to
characterize the quasi-two-dimensional frustrated magnet piperazinium
hexachlorodicuprate (PHCC). The experiments reveal four distinct phases. At low
temperatures and fields the material forms a quantum paramagnet with a 1 meV
singlet triplet gap and a magnon bandwidth of 1.7 meV. The singlet state
involves multiple spin pairs some of which have negative ground state bond
energies. Increasing the field at low temperatures induces three dimensional
long range antiferromagnetic order at 7.5 Tesla through a continuous phase
transition that can be described as magnon Bose-Einstein condensation. The
phase transition to a fully polarized ferromagnetic state occurs at 37 Tesla.
The ordered antiferromagnetic phase is surrounded by a renormalized classical
regime. The crossover to this phase from the quantum paramagnet is marked by a
distinct anomaly in the magnetic susceptibility which coincides with closure of
the finite temperature singlet-triplet pseudo gap. The phase boundary between
the quantum paramagnet and the Bose-Einstein condensate features a finite
temperature minimum at K, which may be associated with coupling to
nuclear spin or lattice degrees of freedom close to quantum criticality.Comment: Submitted to New Journal of Physic
Magnetic field splitting of the spin-resonance in CeCoIn5
Neutron scattering in strong magnetic fields is used to show the
spin-resonance in superconducting CeCoIn5 (Tc=2.3 K) is a doublet. The
underdamped resonance (\hbar \Gamma=0.069 \pm 0.019 meV) Zeeman splits into two
modes at E_{\pm}=\hbar \Omega_{0}\pm g\mu_{B} \mu_{0}H with g=0.96 \pm 0.05. A
linear extrapolation of the lower peak reaches zero energy at 11.2 \pm 0.5 T,
near the critical field for the incommensurate "Q-phase" indicating that the
Q-phase is a bose condensate of spin excitons.Comment: 5 pages, 4 figure
Further Series Studies of the Spin-1/2 Heisenberg Antiferromagnet at T=0: Magnon Dispersion and Structure Factors
We have extended our previous series studies of quantum antiferromagnets at
zero temperature by computing the one-magnon dispersion curves and various
structure factors for the linear chain, square and simple cubic lattices. Many
of these results are new; others are a substantial extension of previous work.
These results are directly comparable with neutron scattering experiments and
we make such comparisons where possible.Comment: 15 pages, 12 figures, revised versio
Spin-Dynamics of the antiferromagnetic S=1/2-Chain at finite magnetic Fields and intermediate Temperatures
We present a study of the dynamic structure factor of the antiferromagnetic
spin-1/2 Heisenberg chain at finite temperatures and finite magnetic fields.
Using Quantum-Monte-Carlo based on the stochastic series expansion and
Maximum-Entropy methods we evaluate the longitudinal and the transverse dynamic
structure factor from vanishing magnetic fields up to and above the threshold
for ferromagnetic saturation, as well as for high and for intermediate
temperatures. We study the field-induced redistribution of spectral weight
contrasting longitudinal versus transverse excitations. At finite fields below
saturation incommensurate low-energy modes are found consistent with zero
temperature Bethe-Ansatz. The crossover between the field induced ferromagnet
above and the Luttinger liquid below is analyzed in terms of the
transverse spin-dynamics. Evaluating sum-rules we assess the quality of the
analytic continuation and demonstrate excellent consistency of the
Maximum-Entropy results.Comment: 10 pages, 6 figure
From incommensurate correlations to mesoscopic spin resonance in YbRh2Si2
Spin fluctuations are reported near the magnetic field driven quantum
critical point in YbRh2Si2. On cooling, ferromagnetic fluctuations evolve into
incommensurate correlations located at q0=+/- (delta,delta) with delta=0.14 +/-
0.04 r.l.u. At low temperatures, an in plane magnetic field induces a sharp
intra doublet resonant excitation at an energy E0=g muB mu0 H with g=3.8 +/-
0.2. The intensity is localized at the zone center indicating precession of
spin density extending xi=6 +/- 2 A beyond the 4f site.Comment: (main text - 4 pages, 4 figures; supplementary information - 3 pages,
3 figures; to be published in Physical Review Letters
The S=1/2 chain in a staggered field: High-energy bound-spinon state and the effects of a discrete lattice
We report an experimental and theoretical study of the antiferromagnetic
S=1/2 chain subject to uniform and staggered fields. Using inelastic neutron
scattering, we observe a novel bound-spinon state at high energies in the
linear chain compound CuCl2 * 2((CD3)2SO). The excitation is explained with a
mean-field theory of interacting S=1/2 fermions and arises from the opening of
a gap at the Fermi surface due to confining spinon interactions. The mean-field
model also describes the wave-vector dependence of the bound-spinon states,
particularly in regions where effects of the discrete lattice are important. We
calculate the dynamic structure factor using exact diagonalization of finite
length chains, obtaining excellent agreement with the experiments.Comment: 16 pages, 7 figures, accepted by Phys. Rev.
- …