844 research outputs found

    Chemo- and Thermosensory Responsiveness of Grueneberg Ganglion Neurons Relies on Cyclic Guanosine Monophosphate Signaling Elements

    Get PDF
    Neurons of the Grueneberg ganglion (GG) in the anterior nasal region of mouse pups respond to cool temperatures and to a small set of odorants. While the thermosensory reactivity appears to be mediated by elements of a cyclic guanosine monophosphate (cGMP) cascade, the molecular mechanisms underlying the odor-induced responses are unclear. Since odor-responsive GG cells are endowed with elements of a cGMP pathway, specifically the transmembrane guanylyl cyclase subtype GC-G and the cyclic nucleotide-gated ion channel CNGA3, the possibility was explored whether these cGMP signaling elements may also be involved in chemosensory GG responses. Experiments with transgenic mice deficient for GC-G or CNGA3 revealed that GG responsiveness to given odorants was significantly diminished in these knockout animals. These findings suggest that a cGMP cascade may be important for both olfactory and thermosensory signaling in the GG. However, in contrast to the thermosensory reactivity, which did not decline over time, the chemosensory response underwent adaptation upon extended stimulation, suggesting that the two transduction processes only partially overlap. Copyright (C) 2011 S. Karger AG, Base

    Prevalence of Listeria species in camel sausages from retail markets in Aydin province in Turkey and RAPD analysis of Listeria monocytogenes isolates

    Get PDF
    Samples were taken from 100 camel sausages from the different retail markets in Aydin province in the south-west of Turkey and they were tested for the presence of Listeria spp by biochemical methods. Samples were enriched using Listeria Enrichment Broth and they were inoculated onto Listeria Selective Agar. Listeria monocytogenes was isolated from nine samples (9%), Listeria innocua from 14 samples (14%) and Listeria welshimeri from two samples(2%). A 701 bp fragment of listeriolysin O sequence for L. monocytogenes was amplified using specific primers by polymerase chain reaction (PCR) for confirmation of the identification. A random primer (OPA-11) was used in a random amplified polymorphic DNA (RAPD) assay. This detected five different band profiles amongst the L. monocytogenes isolates, indicating a relatively large amount of genetic heterogeneity amongst the nine isolates. The study has highlighted the need for improved strategies for food safety, in particular appropriate hygienic precautions to avoid contamination of sausage during the manufacturing process and appropriate preservation techniques during storage and transport, to prevent transmission of Listeria spp to consumers at home and abroad

    The SpikerBox: A Low Cost, Open-Source BioAmplifier for Increasing Public Participation in Neuroscience Inquiry

    Get PDF
    Although people are generally interested in how the brain functions, neuroscience education for the public is hampered by a lack of low cost and engaging teaching materials. To address this, we developed an open-source tool, the SpikerBox, which is appropriate for use in middle/high school educational programs and by amateurs. This device can be used in easy experiments in which students insert sewing pins into the leg of a cockroach, or other invertebrate, to amplify and listen to the electrical activity of neurons. With the cockroach leg preparation, students can hear and see (using a smartphone oscilloscope app we have developed) the dramatic changes in activity caused by touching the mechanosensitive barbs. Students can also experiment with other manipulations such as temperature, drugs, and microstimulation that affect the neural activity. We include teaching guides and other resources in the supplemental materials. These hands-on lessons with the SpikerBox have proven to be effective in teaching basic neuroscience

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons

    Get PDF
    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis

    The Stimulatory GΞ±s Protein Is Involved in Olfactory Signal Transduction in Drosophila

    Get PDF
    Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that GΞ±s plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO2 responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved GΞ±s also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that GΞ±s plays a role in the OR mediated signaling cascade in Drosophila

    The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    Get PDF
    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use

    Cross-Species Comparison of Genes Related to Nutrient Sensing Mechanisms Expressed along the Intestine

    Get PDF
    Introduction Intestinal chemosensory receptors and transporters are able to detect food-derived molecules and are involved in the modulation of gut hormone release. Gut hormones play an important role in the regulation of food intake and the control of gastrointestinal functioning. This mechanism is often referred to as β€œnutrient sensing”. Knowledge of the distribution of chemosensors along the intestinal tract is important to gain insight in nutrient detection and sensing, both pivotal processes for the regulation of food intake. However, most knowledge is derived from rodents, whereas studies in man and pig are limited, and cross-species comparisons are lacking. Aim To characterize and compare intestinal expression patterns of genes related to nutrient sensing in mice, pigs and humans. Methods Mucosal biopsy samples taken at six locations in human intestine (nβ€Š=β€Š40) were analyzed by qPCR. Intestinal scrapings from 14 locations in pigs (nβ€Š=β€Š6) and from 10 locations in mice (nβ€Š=β€Š4) were analyzed by qPCR and microarray, respectively. The gene expression of glucagon, cholecystokinin, peptide YY, glucagon-like peptide-1 receptor, taste receptor T1R3, sodium/glucose cotransporter, peptide transporter-1, GPR120, taste receptor T1R1, GPR119 and GPR93 was investigated. Partial least squares (PLS) modeling was used to compare the intestinal expression pattern between the three species. Results and conclusion The studied genes were found to display specific expression patterns along the intestinal tract. PLS analysis showed a high similarity between human, pig and mouse in the expression of genes related to nutrient sensing in the distal ileum, and between human and pig in the colon. The gene expression pattern was most deviating between the species in the proximal intestine. Our results give new insights in interspecies similarities and provide new leads for translational research and models aiming to modulate food intake processes in man

    Ca2+ Extrusion by NCX Is Compromised in Olfactory Sensory Neurons of OMPβˆ’/βˆ’ Mice

    Get PDF
    The role of olfactory marker protein (OMP), a hallmark of mature olfactory sensory neurons (OSNs), has been poorly understood since its discovery. The electrophysiological and behavioral phenotypes of OMP knockout mice indicated that OMP influences olfactory signal transduction. However, the mechanism by which this occurs remained unknown.We used intact olfactory epithelium obtained from WT and OMP(-/-) mice to monitor the Ca(2+) dynamics induced by the activation of cyclic nucleotide-gated channels, voltage-operated Ca(2+) channels, or Ca(2+) stores in single dendritic knobs of OSNs. Our data suggested that OMP could act to modulate the Ca(2+)-homeostasis in these neurons by influencing the activity of the plasma membrane Na(+)/Ca(2+)-exchanger (NCX). Immunohistochemistry verifies colocalization of NCX1 and OMP in the cilia and knobs of OSNs. To test the role of NCX activity, we compared the kinetics of Ca(2+) elevation by stimulating the reverse mode of NCX in both WT and OMP(-/-) mice. The resulting Ca(2+) responses indicate that OMP facilitates NCX activity and allows rapid Ca(2+) extrusion from OSN knobs. To address the mechanism by which OMP influences NCX activity in OSNs we studied protein-peptide interactions in real-time using surface plasmon resonance technology. We demonstrate the direct interaction of the XIP regulatory-peptide of NCX with calmodulin (CaM).Since CaM also binds to the Bex protein, an interacting protein partner of OMP, these observations strongly suggest that OMP can influence CaM efficacy and thus alters NCX activity by a series of protein-protein interactions
    • …
    corecore