5,483 research outputs found

    Embedding distortion analysis in wavelet-domain watermarking

    Get PDF
    Imperceptibility and robustness are two complementary fundamental requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility, but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often infuse distortions resulting in poor visual quality in host images. This article analyses the embedding distortion for wavelet-based watermarking schemes. We derive the relationship between distortion, measured in mean square error (MSE), and the watermark embedding modification and propose the linear proportionality between MSE and the sum of energy of the selected wavelet coefficients for watermark embedding modification. The initial proposition assumes the orthonormality of discrete wavelet transform. It is further extended for non-orthonormal wavelet kernels using a weighting parameter that follows the energy conservation theorems in wavelet frames. The proposed analysis is verified by experimental results for both non-blind and blind watermarking schemes. Such a model is useful to find the optimum input parameters, including the wavelet kernel, coefficient selection, and subband choices for wavelet domain image watermarking

    INFORMATION VALUE IN WEED MANAGEMENT

    Get PDF
    Use of the economic threshold to improve the efficiency of preemergent-herbicide treatment decisions is limited by a lack of weed information. An economic model for assessing the expected value of weed information needed to implement a threshold decision rule is developed. Empirical results suggest that early season weed information can have value in cabbage weed management in Massachusetts.Crop Production/Industries,

    Sediment Transport and Hydraulics of Flow in the Kankakee River--Illinois: Phase II

    Get PDF
    published or submitted for publicationis peer reviewedOpe

    A multigrid method for the Helmholtz equation with optimized coarse grid corrections

    Get PDF
    We study the convergence of multigrid schemes for the Helmholtz equation, focusing in particular on the choice of the coarse scale operators. Let G_c denote the number of points per wavelength at the coarse level. If the coarse scale solutions are to approximate the true solutions, then the oscillatory nature of the solutions implies the requirement G_c > 2. However, in examples the requirement is more like G_c >= 10, in a trade-off involving also the amount of damping present and the number of multigrid iterations. We conjecture that this is caused by the difference in phase speeds between the coarse and fine scale operators. Standard 5-point finite differences in 2-D are our first example. A new coarse scale 9-point operator is constructed to match the fine scale phase speeds. We then compare phase speeds and multigrid performance of standard schemes with a scheme using the new operator. The required G_c is reduced from about 10 to about 3.5, with less damping present so that waves propagate over > 100 wavelengths in the new scheme. Next we consider extensions of the method to more general cases. In 3-D comparable results are obtained with standard 7-point differences and optimized 27-point coarse grid operators, leading to an order of magnitude reduction in the number of unknowns for the coarsest scale linear system. Finally we show how to include PML boundary layers, using a regular grid finite element method. Matching coarse scale operators can easily be constructed for other discretizations. The method is therefore potentially useful for a large class of discretized high-frequency Helmholtz equations.Comment: Coarse scale operators are simplified and only standard smoothers used in v3; 5 figures, 12 table

    Secondary circulation in natural streams

    Get PDF
    Secondary circulation which is sometimes referred to as secondary flow, secondary current or transverse current is an important phenomenon in natural streams and plays an important role in many natural processes in streams such as stream channel meander, bank erosion, bed scour, resuspension, and movement of sediment. Secondary circulation is that component of flow which is not in the main flow direction and is small as compared to the main flow velocity. A computerized data collection system for secondary circulation data acquisition in natural streams was developed and utilized in the field. The system includes an electromagnetic current meter, a micro-computer, an interface between the computer and the current meter, and a specially designed supporting structure. Secondary circulation data was collected in the Sangamon River near Mahomet, Illinois, utilizing the data collection system. A mathematical model for secondary circulation based on an existing model has been developed and tested against the data collected in the field. Model results generally reproduce similar secondary circulation patterns as observed from the field data but over-estimate the magnitudes of the velocities.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Small Quadrupole Deformation for the Dipole Bands in 112In

    Full text link
    High spin states in 112^{112}In were investigated using 100^{100}Mo(16^{16}O, p3n) reaction at 80 MeV. The excited level have been observed up to 5.6 MeV excitation energy and spin \sim 20\hbar with the level scheme showing three dipole bands. The polarization and lifetime measurements were carried out for the dipole bands. Tilted axis cranking model calculations were performed for different quasi-particle configurations of this doubly odd nucleus. Comparison of the calculations of the model with the B(M1) transition strengths of the positive and negative parity bands firmly established their configurations.Comment: 10 pages, 11 figures, 2 table

    Magnetic enhancement of Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide by mechanical milling

    Full text link
    We report the magnetic properties of mechanically milled Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide. After 24 hours milling of the bulk sample, the XRD spectra show nanostructure with average particle size \approx 20 nm. The as milled sample shows an enhancement in magnetization and ordering temperature compared to the bulk sample. If the as milled sample is annealed at different temperatures for the same duration, recrystallization process occurs and approaches to the bulk structure on increasing the annealing temperatures. The magnetization of the annealed samples first increases and then decreases. At higher annealing temperature (\sim 10000^{0}C) the system shows two coexisting magnetic phases {\it i.e.}, spin glass state and ferrimagnetic state, similar to the as prepared bulk sample. The room temperature M\"{o}ssbauer spectra of the as milled sample, annealed at 3000^{0}C for different durations (upto 575 hours), suggest that the observed change in magnetic behaviour is strongly related with cations redistribution between tetrahedral (A) and octahedral (O) sites in the spinel structure. Apart from the cation redistribution, we suggest that the enhancement of magnetization and ordering temperature is related with the reduction of B site spin canting and increase of strain induced anisotropic energy during mechanical milling.Comment: 14 pages LaTeX, 10 ps figure
    corecore