16 research outputs found

    Expanding the clinical spectrum of biglycan-related Meester-Loeys syndrome

    Get PDF
    \ua9 The Author(s) 2024.Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5’ untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN

    De maatschappelijke kosten van het geen werk hebben

    No full text

    Legislative Documents

    No full text
    Also, variously referred to as: Senate bills; Senate documents; Senate legislative documents; legislative documents; and General Court documents

    Cardiac function, fiber shortening and dynamic geometry

    No full text
    Many models for the study of the pump function of the heart emphasize the importance of cardiac geometry and detailed dimensional data. Because of the lack of accurate measuring techniques, approximate geometries such as shells of revolution have been applied. In this study, methods are presented that measure the dynamic geometry of the working, isolated canine heart by means of ultrasound- velocity tomography techniques. In addition, cardiac dimensions, intramural deformations, and fiber shortening have been measured dynamically in the in situ canine heart throughout the cardiac cycle with implanted tadiopaque markers and biplane roentgen techniques. Results of regional contraction and relaxation patterns are presented. Epicardial fiber shortening between apex and base were computed and found to be dependent on the duration of the preceding RR interval

    Action selection and refinement in subcortical loops through basal ganglia and cerebellum

    No full text
    Subcortical loops through the basal ganglia and the cerebellum form computationally powerful distributed processing modules (DPMs). This paper relates the computational features of a DPM's loop through the basal ganglia to experimental results for two kinds of natural action selection. First, functional imaging during a serial order recall task was used to study human brain activity during the selection of sequential actions from working memory. Second, microelectrode recordings from monkeys trained in a step-tracking task were used to study the natural selection of corrective submovements. Our DPM-based model assisted in the interpretation of puzzling data from both of these experiments. We come to posit that the many loops through the basal ganglia each regulate the embodiment of pattern formation in a given area of cerebral cortex. This operation serves to instantiate different kinds of action (or thought) mediated by different areas of cerebral cortex. We then use our findings to formulate a model of the aetiology of schizophrenia
    corecore