1,768 research outputs found
Computational simulation of coupled material degradation processes for probabilistic lifetime strength of aerospace materials
The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology
Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue
This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology
CHEMICALS AND HEALTH - THOUGHT FOR FOOD
In our contribution we concisely question and answer some basic notions on food, health, and safety. We show that for some food components such as flavonoids, a whole range of small toxicological effects that have been uncovered the last decade on the whole confer benefits to human health. This development underlines the notion that health is adaptation with respect to the exposures humans experience when consuming food
Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects
This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption
Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects
The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models
{EpiExplorer}: {Live} Exploration and Global Analysis of Large Epigenomic Datasets
ABSTRACT: Epigenome mapping consortia are generating resources of tremendous value for studying epigenetic regulation. To maximize their utility and impact, new tools are needed that facilitate interactive analysis of epigenome datasets. Here we describe EpiExplorer, a web tool for exploring genome and epigenome data on a genomic scale. We demonstrate EpiExplorer's utility by describing a hypothesis-generating analysis of DNA hydroxymethylation in relation to public reference maps of the human epigenome. All EpiExplorer analyses are performed dynamically within seconds, using an efficient and versatile text indexing scheme that we introduce to bioinformatics. EpiExplorer is available at http://epiexplorer.mpi-inf.mpg.de
IO-Top-k: index-access optimized top-k query processing
Top-k query processing is an important building block for ranked retrieval, with applications ranging from text and data integration to distributed aggregation of network logs and sensor data. Top-k queries operate on index lists for a query's elementary conditions and aggregate scores for result candidates. One of the best implementation methods in this setting is the family of threshold algorithms, which aim to terminate the index scans as early as possible based on lower and upper bounds for the final scores of result candidates. This procedure performs sequential disk accesses for sorted index scans, but also has the option of performing random accesses to resolve score uncertainty. This entails scheduling for the two kinds of accesses: 1) the prioritization of different index lists in the sequential accesses, and 2) the decision on when to perform random accesses and for which candidates. The prior literature has studied some of these scheduling issues, but only for each of the two access types in isolation. The current paper takes an integrated view of the scheduling issues and develops novel strategies that outperform prior proposals by a large margin. Our main contributions are new, principled, scheduling methods based on a Knapsack-related optimization for sequential accesses and a cost model for random accesses. The methods can be further boosted by harnessing probabilistic estimators for scores, selectivities, and index list correlations. We also discuss efficient implementation techniques for the underlying data structures. In performance experiments with three different datasets (TREC Terabyte, HTTP server logs, and IMDB), our methods achieved significant performance gains compared to the best previously known methods: a factor of up to 3 in terms of execution costs, and a factor of 5 in terms of absolute run-times of our implementation. Our best techniques are close to a lower bound for the execution cost of the considered class of threshold algorithms
Probabilistic lifetime strength of aerospace materials via computational simulation
The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data
Circulating Cancer Biomarkers
Cancer is among the major public health problems worldwide, representing the leading cause of morbidity and mortality in industrialized countries [...
- …