8 research outputs found

    PLM-IPE: A Pixel-Landmark Mutual Enhanced Framework for Implicit Preference Estimation

    Get PDF
    In this paper, we are interested in understanding how customers perceive fashion recommendations, in particular when observing a proposed combination of garments to compose an outfit. Automatically understanding how a suggested item is perceived, without any kind of active engagement, is in fact an essential block to achieve interactive applications. We propose a pixel-landmark mutual enhanced framework for implicit preference estimation, named PLM-IPE, which is capable of inferring the user's implicit preferences exploiting visual cues, without any active or conscious engagement. PLM-IPE consists of three key modules: pixel-based estimator, landmark-based estimator and mutual learning based optimization. The former two modules work on capturing the implicit reaction of the user from the pixel level and landmark level, respectively. The last module serves to transfer knowledge between the two parallel estimators. Towards evaluation, we collected a real-world dataset, named SentiGarment, which contains 3,345 facial reaction videos paired with suggested outfits and human labeled reaction scores. Extensive experiments show the superiority of our model over state-of-the-art approaches

    Garment recommendation with memory augmented neural networks

    No full text
    Fashion plays a pivotal role in society. Combining garments appropriately is essential for people to communicate their personality and style. Also different events require outfits to be thoroughly chosen to comply with underlying social clothing rules. Therefore, combining garments appropriately might not be trivial. The fashion industry has turned this into a massive source of income, relying on complex recommendation systems to retrieve and suggest appropriate clothing items for customers. To perform better recommendations, personalized suggestions can be performed, taking into account user preferences or purchase histories. In this paper, we propose a garment recommendation system to pair different clothing items, namely tops and bottoms, exploiting a Memory Augmented Neural Network (MANN). By training a memory writing controller, we are able to store a non-redundant subset of samples, which is then used to retrieve a ranked list of suitable bottoms to complement a given top. In particular, we aim at retrieving a variety of modalities in which a certain garment can be combined. To refine our recommendations, we then include user preferences via Matrix Factorization. We experiment on IQON3000, a dataset collected from an online fashion community, reporting state of the art results

    Fashion recommendation based on style and social events

    No full text
    Fashion recommendation is often declined as the task of finding complementary items given a query garment or retrieving outfits that are suitable for a given user. In this work we address the problem by adding an additional semantic layer based on the style of the proposed dressing. We model style according to two important aspects: the mood and the emotion concealed behind color combination patterns and the appropriateness of the retrieved garments for a given type of social event. To address the former we rely on Shigenobu Kobayashi’s color image scale, which associated emotional patterns and moods to color triples. The latter instead is analyzed by extracting garments from images of social events. Overall, we integrate in a state of the art garment recommendation framework a style classifier and an event classifier in order to condition recommendation on a given query

    Style-Based Outfit Recommendation

    No full text
    In this paper we propose a garment recommendation system that leverages emotive color information to give recommendations that adhere to a desired style. We leverage previous work by Shigenobu Kobayashi on how specific color combinations, that pertain to certain pre-defined styles, are able to convey specific emotions in human beings. Leveraging this information, we extend the classic general garment recommendation to a style-driven one, where the user can adapt the suggestions to a specific style that may be more appropriate for a specific social event. Here, first we train a generalized style classifier based on Kobayashi's color triplets, then we lever-age a recent memory network-based garment recommendation system to perform suggestions of bottom garments (e.g. skirts, trousers, etc.) given a user-defined top (e.g. a shirt, T-shirt, etc.). Suggestions are then processed to maintain only the ones that, according to our classifier, are coherent with the user defined style. Experiments show that our system is able to generalise on Kobayashi's color styles and that the recommendation system is able to propose garments that are in line with the user desire while also introducing diversity in the proposed garments

    PLM-IPE: A Pixel-Landmark Mutual Enhanced Framework for Implicit Preference Estimation

    No full text
    In this paper, we are interested in understanding how customers perceive fashion recommendations, in particular when observing a proposed combination of garments to compose an outfit. Automatically understanding how a suggested item is perceived, without any kind of active engagement, is in fact an essential block to achieve interactive applications. We propose a pixel-landmark mutual enhanced framework for implicit preference estimation, named PLM-IPE, which is capable of inferring the user's implicit preferences exploiting visual cues, without any active or conscious engagement. PLM-IPE consists of three key modules: pixel-based estimator, landmark-based estimator and mutual learning based optimization. The former two modules work on capturing the implicit reaction of the user from the pixel level and landmark level, respectively. The last module serves to transfer knowledge between the two parallel estimators. Towards evaluation, we collected a real-world dataset, named SentiGarment, which contains 3,345 facial reaction videos paired with suggested outfits and human labeled reaction scores. Extensive experiments show the superiority of our model over state-of-the-art approaches
    corecore