767 research outputs found
Evaluation of temperature distribution for bone drilling considering aging factor
Bone drilling is a routine operation in surgeries, such as neurosurgery and orthopedics. However, the excessive drilling temperature may cause severe thermal damage to the bone tissue. Therefore, the drilling temperature determination of bone tissue can reduce the harm caused by thermal damage. A time-varying temperature field simulation model of bone drilling was set up by ABAQUS software in this paper, based on the Johnson-Cook model. Then it was validated with experiments by drilling cortical bone of fresh bovine shaft of the femur. The relative error between the experimental values and the theoretical values within 7.67% showed a good consistency. Furthermore, the aging factor is also considered to evaluate the temperature field of bone drilling. The results showed that the drilling temperature near the bone-drill area increased significantly. The drilling temperature of cortical bone decreases sharply with the radial distance and exhibits a hysteresis lag in the axial distribution. The aging factor mainly affects the peak of drilling temperature. The peak of drilling temperature tends to increase with age. The peak drilling temperature in the elderly (70y) was up to 6.8% higher than that in the young (20y), indicating that the elderly is more prone to excessive drilling temperature. Therefore, special attention should be paid to the temperature control of elderly bone tissue
Detection of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based assays in a portable degas-actuated microfluidic diagnostic assay platform
An estimated 1.5 billion microbial infections occur globally each year and result in ~4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridgebased system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuumdegassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/ reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ~10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting
Optimization of the Microstructure and Mechanical Properties of a Laves Phase-Strengthened Hypoeutectic NiAl/Cr(Mo,W) Alloy by Suction Casting
A niobium (Nb)-doped NiAl/Cr(Mo,W) hypoeutectic alloy was prepared by conventional and suction casting methods. Its microstructure and compression properties were studied to evaluate the effect of a manufacturing process. A coarse primary NiAl phase and NiAl/Cr(Mo) eutectic cell are demonstrated to be the main components of a NiAl/Cr(Mo,W)–Nb hypoeutectic alloy.Отримано легований ніобієм (Nb) доевтектичний сплав NiAl/Cr(Mo,W) при звичайному литті і литті методом вакуумного всмоктування. Вивчено його мікроструктура і механічні властивості при стиску для оцінки впливу процесу виробництва. Показано, що велика первинна фаза NiAl і евтектична комірка NiAl/Cr(Mo) є основними компонентами сплаву NiAl/Cr(Mo,W) Nb.Получен легированный ниобием (Nb) доэвтектический сплав NiAl/Cr(Mo,W) обычным литьем и литьем методом вакуумного всасывания. Изучены его микроструктура и механические свойства при сжатии для оценки влияния процесса производства. Показано, что крупная первичная фаза NiAl и эвтектическая ячейка NiAl/Cr(Mo) являются основными компонентами сплава NiAl/Cr(Mo,W) Nb
Graphene re-knits its holes
Nano-holes, etched under an electron beam at room temperature in singlelayer
graphene sheets as a result of their interaction with metalimpurities, are
shown to heal spontaneously by filling up with either non-hexagon,
graphene-like, or perfect hexagon 2D structures. Scanning transmission electron
microscopy was employed to capture the healing process and study atom-by-atom
the re-grown structure. A combination of these nano-scale etching and
re-knitting processes could lead to new graphene tailoring approaches.Comment: 11 pages, 4 figure
Gene conversion in human rearranged immunoglobulin genes
Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V<sub>H</sub> segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V<sub>H</sub> replacements with no addition of untemplated nucleotides at the V<sub>H</sub>–V<sub>H</sub> joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V<sub>H</sub> replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion
Hemodiafiltration maintains a sustained improvement in blood pressure compared to conventional hemodialysis in children-the HDF, heart and height (3H) study
BACKGROUND: Hypertension is prevalent in children on dialysis and associated with cardiovascular disease. We studied the blood pressure (BP) trends and the evolution of BP over 1 year in children on conventional hemodialysis (HD) vs. hemodiafiltration (HDF). METHODS: This is a post hoc analysis of the "3H - HDF-Hearts-Height" dataset, a multicenter, parallel-arm observational study. Seventy-eight children on HD and 55 on HDF who had three 24-h ambulatory BP monitoring (ABPM) measures over 1 year were included. Mean arterial pressure (MAP) was calculated and hypertension defined as 24-h MAP standard deviation score (SDS) ≥95th percentile. RESULTS: Poor agreement between pre-dialysis systolic BP-SDS and 24-h MAP was found (mean difference - 0.6; 95% limits of agreement -4.9-3.8). At baseline, 82% on HD and 44% on HDF were hypertensive, with uncontrolled hypertension in 88% vs. 25% respectively; p < 0.001. At 12 months, children on HDF had consistently lower MAP-SDS compared to those on HD (p < 0.001). Over 1-year follow-up, the HD group had mean MAP-SDS increase of +0.98 (95%CI 0.77-1.20; p < 0.0001), whereas the HDF group had a non-significant increase of +0.15 (95%CI -0.10-0.40; p = 0.23). Significant predictors of MAP-SDS were dialysis modality (β = +0.83 [95%CI +0.51 - +1.15] HD vs. HDF, p < 0.0001) and higher inter-dialytic-weight-gain (IDWG)% (β = 0.13 [95%CI 0.06-0.19]; p = 0.0003). CONCLUSIONS: Children on HD had a significant and sustained increase in BP over 1 year compared to a stable BP in those on HDF, despite an equivalent dialysis dose. Higher IDWG% was associated with higher 24-h MAP-SDS in both groups
The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
Hemodiafiltration Is Associated With Reduced Inflammation and Increased Bone Formation Compared With Conventional Hemodialysis in Children: The HDF, Hearts and Heights (3H) Study
BACKGROUND:
Patients on dialysis have a high burden of bone-related comorbidities, including fractures. We report a post hoc analysis of the prospective cohort study HDF, Hearts and Heights (3H) to determine the prevalence and risk factors for chronic kidney disease-related bone disease in children on hemodiafiltration (HDF) and conventional hemodialysis (HD).
METHODS:
The baseline cross-sectional analysis included 144 children, of which 103 (61 HD, 42 HDF) completed 12-month follow-up. Circulating biomarkers of bone formation and resorption, inflammatory markers, fibroblast growth factor-23, and klotho were measured.
RESULTS:
Inflammatory markers interleukin-6, tumor necrosis factor-α, and high-sensitivity C-reactive protein were lower in HDF than in HD cohorts at baseline and at 12 months (P < .001). Concentrations of bone formation (bone-specific alkaline phosphatase) and resorption (tartrate-resistant acid phosphatase 5b) markers were comparable between cohorts at baseline, but after 12-months the bone-specific alkaline phosphatase/tartrate-resistant acid phosphatase 5b ratio increased in HDF (P = .004) and was unchanged in HD (P = .44). On adjusted analysis, the bone-specific alkaline phosphatase/tartrate-resistant acid phosphatase 5b ratio was 2.66-fold lower (95% confidence interval, −3.91 to −1.41; P < .0001) in HD compared with HDF. Fibroblast growth factor-23 was comparable between groups at baseline (P = .52) but increased in HD (P < .0001) and remained unchanged in HDF (P = .34) at 12 months. Klotho levels were similar between groups and unchanged during follow-up. The fibroblast growth factor-23/klotho ratio was 3.86-fold higher (95% confidence interval, 2.15–6.93; P < .0001) after 12 months of HD compared with HDF.
CONCLUSION:
Children on HDF have an attenuated inflammatory profile, increased bone formation, and lower fibroblast growth factor-23/klotho ratios compared with those on HD. Long-term studies are required to determine the effects of an improved bone biomarker profile on fracture risk and cardiovascular health
Casein SNP in Norwegian goats: additive and dominance effects on milk composition and quality
<p>Abstract</p> <p>Background</p> <p>The four casein proteins in goat milk are encoded by four closely linked casein loci (<it>CSN1S1</it>, <it>CSN2</it>, <it>CSN1S2 </it>and <it>CSN3</it>) within 250 kb on caprine chromosome 6. A deletion in exon 12 of <it>CSN1S1</it>, so far reported only in Norwegian goats, has been found at high frequency (0.73). Such a high frequency is difficult to explain because the national breeding goal selects against the variant's effect.</p> <p>Methods</p> <p>In this study, 575 goats were genotyped for 38 Single Nucleotide Polymorphisms (SNP) located within the four casein genes. Milk production records of these goats were obtained from the Norwegian Dairy Goat Control. Test-day mixed models with additive and dominance fixed effects of single SNP were fitted in a model including polygenic effects.</p> <p>Results</p> <p>Significant additive effects of single SNP within <it>CSN1S1 </it>and <it>CSN3 </it>were found for fat % and protein %, milk yield and milk taste. The allele with the deletion showed additive and dominance effects on protein % and fat %, and overdominance effects on milk quantity (kg) and lactose %. At its current frequency, the observed dominance (overdominance) effects of the deletion allele reduced its substitution effect (and additive genetic variance available for selection) in the population substantially.</p> <p>Conclusions</p> <p>The selection pressure of conventional breeding on the allele with the deletion is limited due to the observed dominance (overdominance) effects. Inclusion of molecular information in the national breeding scheme will reduce the frequency of this deletion in the population.</p
- …