54 research outputs found
Culex quinquefasciatus mosquitoes do not support replication of Zika virus
The rapid spread of Zika virus (ZIKV) in the Americas raised many questions about the role of Culex quinquefasciatus mosquitoes in transmission, in addition to the key role played by the vector Aedes aegypti. Here we analysed the competence of Cx. quinquefasciatus (with or without Wolbachia endosymbionts) for a ZIKV isolate. We also examined the induction of RNA interference pathways after viral challenge and the production of small virus-derived RNAs. We did not observe any infection nor such small virus-derived RNAs, regardless of the presence or absence of Wolbachia. Thus, Cx. quinquefasciatus does not support ZIKV replication and Wolbachia is not involved in producing this phenotype. In short, these mosquitoes are very unlikely to play a role in transmission of ZIKV
Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project
First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika
Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project
First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika.info:eu-repo/semantics/publishedVersio
Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean
The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p. quinquefasciatus populations on four islands of the south-western Indian Ocean (La RĂ©union, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La RĂ©union, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La RĂ©union males resulting in demographic crash when LR[wPip(Is)] males were introduced into La RĂ©union laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control strategy on these islands
Zika vector competence data reveals risks of outbreaks: the contribution of the European ZIKAlliance project
First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika
Evolutionary dynamics of endocellular bacteria Wolbachia and cytoplasmic incompatibilities in the mosquito Culex pipiens
Les Wolbachia sont des α-Protéobactéries endocellulaires transmises maternellement et qui manipulent la reproduction des Arthropodes pour augmenter leur transmission. Chez le moustique Culex pipiens, Wolbachia induit l'incompatibilité cytoplasmique (IC) qui se traduit par une forte mortalité embryonnaire lors de croisements entre individus infectés par des souches incompatibles de Wolbachia. Ce moustique se caractérise par une forte diversité génétique de ses Wolbachia (nommées wPip) et par des patrons d'IC complexes. Nous avons examiné les mécanismes qui façonnent la dynamique de cette association symbiotique aux niveaux génomique, phénotypique et populationnel. Nous avons montré que les souches wPip ont une origine génétique commune récente et qu'elles s'organisent en groupes génétiques présentant une structuration géographique. Nous avons mis en évidence des évènements de recombinaison entre souches wPip qui pourraient jouer un rôle majeur dans la diversité génétique des Wolbachia et dans l'évolution rapide des patrons d'IC. En croisant des lignées de moustiques d'origines géographiques diverses et infectées par des souches de différents groupes génétiques, nous avons montré que les IC (i) évoluent très rapidement chez Cx. pipiens; (ii) sont contrôlées par plusieurs déterminants génétiques, et (iii) qu'il y a une relation entre les patrons d'IC et les groupes génétiques des Wolbachia. Dans les populations naturelles, il apparaît que les IC sont contre sélectionnées au sein d'une population mais qu'une zone de contact entre populations infectées par des souches incompatibles peut se maintenir de façon stable.Wolbachia are maternally inherited endocellular α-Proteobacteria that manipulate the reproduction of Arthropods to promote their own transmission. In the mosquito Culex pipiens, Wolbachia induce cytoplasmic incompatibility (CI) which results in high embryonic mortality in crosses between mosquitoes infected with incompatible Wolbachia strains. This mosquito is characterized by high genetic diversity of its Wolbachia (referred as wPip strains) and by complex CI patterns. We examined mechanisms that shape the dynamics of this symbiotic association at genomic, phenotypic and field population levels to understand how it evolves. We showed that wPip strains have a unique and recent evolutionary origin and that their diversity clusters into distinct genetic groups with a geographic structure. We revealed the existence of extensive recombinations among wPip strains, which could influence their adaptive dynamics by creating new wPip strains and thus allow the rapid emergence of new CI patterns. The analysis of crossing relationships between mosquito lines from different geographic origins and infected with wPip strains belonging to different genetic groups showed that CIs (i) evolve rapidly in Cx. pipiens; (ii) are controlled by several genetic factors, and (iii) there is a significant relationship between CI patterns and genetic divergence of wPip strains. In field populations, it appears that CIs are selected against within a population but a contact zone between populations infected by incompatible Wolbachia strains can be stably maintained
Evolutionary dynamics of endocellular bacteria Wolbachia and cytoplasmic incompatibilities in the mosquito Culex pipiens
Les Wolbachia sont des a-Protéobactéries endocellulaires transmises maternellement et qui manipulent la reproduction des Arthropodes pour augmenter leur transmission. Chez le moustique Culex pipiens, Wolbachia induit l'incompatibilité cytoplasmique (IC) qui se traduit par une forte mortalité embryonnaire lors de croisements entre individus infectés par des souches incompatibles de Wolbachia. Ce moustique se caractérise par une forte diversité génétique de ses Wolbachia (nommées wPip) et par des patrons d'IC complexes. Nous avons examiné les mécanismes qui façonnent la dynamique de cette association symbiotique aux niveaux génomique, phénotypique et populationnel. Nous avons montré que les souches wPip ont une origine génétique commune récente et qu'elles s'organisent en groupes génétiques présentant une structuration géographique. Nous avons mis en évidence des évènements de recombinaison entre souches wPip qui pourraient jouer un rôle majeur dans la diversité génétique des Wolbachia et dans l'évolution rapide des patrons d'IC. En croisant des lignées de moustiques d'origines géographiques diverses et infectées par des souches de différents groupes génétiques, nous avons montré que les IC (i) évoluent très rapidement chez Cx. pipiens; (ii) sont contrôlées par plusieurs déterminants génétiques, et (iii) qu'il y a une relation entre les patrons d'IC et les groupes génétiques des Wolbachia. Dans les populations naturelles, il apparaît que les IC sont contre sélectionnées au sein d'une population mais qu'une zone de contact entre populations infectées par des souches incompatibles peut se maintenir de façon stable.Wolbachia are maternally inherited endocellular a-Proteobacteria that manipulate the reproduction of Arthropods to promote their own transmission. In the mosquito Culex pipiens, Wolbachia induce cytoplasmic incompatibility (CI) which results in high embryonic mortality in crosses between mosquitoes infected with incompatible Wolbachia strains. This mosquito is characterized by high genetic diversity of its Wolbachia (referred as wPip strains) and by complex CI patterns. We examined mechanisms that shape the dynamics of this symbiotic association at genomic, phenotypic and field population levels to understand how it evolves. We showed that wPip strains have a unique and recent evolutionary origin and that their diversity clusters into distinct genetic groups with a geographic structure. We revealed the existence of extensive recombinations among wPip strains, which could influence their adaptive dynamics by creating new wPip strains and thus allow the rapid emergence of new CI patterns. The analysis of crossing relationships between mosquito lines from different geographic origins and infected with wPip strains belonging to different genetic groups showed that CIs (i) evolve rapidly in Cx. pipiens; (ii) are controlled by several genetic factors, and (iii) there is a significant relationship between CI patterns and genetic divergence of wPip strains. In field populations, it appears that CIs are selected against within a population but a contact zone between populations infected by incompatible Wolbachia strains can be stably maintained.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF
Contrasted transmission efficiency of Zika virus strains by mosquito species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Reunion Island
International audienceBackground: Zika virus (ZIKV) is a mosquito-borne flavivirus that recently emerged in the South Pacific islands and Americas where unprecedented outbreaks were reported. Although Aedes aegypti is considered to be the main vector for ZIKV, other mosquito species have been shown to be potential vectors and differences in vector competence with respect to mosquito strain and ZIKV strain have been demonstrated. In this study we compared the vector competence of three mosquito species Aedes albopictus, Ae. aegypti and Culex quinquefasciatus from Reunion Island for three ZIKV strains. Methods: Five mosquito strains (2 strains of Ae. albopictus, 1 of Ae. aegypti and 2 of Cx. quinquefasciatus) were exposed to three ZIKV strains: one African strain (Dak84) and two Asian strains (PaRi_2015 and MAS66). The vector competence parameters (infection rate, dissemination efficiency and transmission efficiency) and viral loads were examined at 14 and 21 days post-infection. Results: The two Cx. quinquefasciatus strains did not become infected and were therefore unable to either disseminate or transmit any of the three ZIKV strains. Aedes albopictus and Ae. aegypti strains were poorly competent for the two Asian ZIKV strains, while both mosquito species displayed higher infection rates, dissemination and transmission efficiencies for the African ZIKV Dak84 strain. However, this African ZIKV strain was better transmitted by Ae. aegypti as compared to Ae. albopictus. Conclusions: Our results show that both Ae. albopictus and Ae. aegypti, from Reunion Island, are more likely to be competent for ZIKV in contrast to Cx. quinquefasciatus which appeared refractory to all tested ZIKV strains. This improves our understanding of the role of mosquito species in the risk of the ZIKV emergence on Reunion Island
Construction of a genetic sexing strain for Aedes albopictus: a promising tool for the development of sterilizing insect control strategies targeting the tiger mosquito
Abstract Background Aedes albopictus is an invasive mosquito species of global medical concern as its distribution has recently expanded to Africa, the Americas and Europe. In the absence of prophylaxis protecting human populations from emerging arboviruses transmitted by this mosquito species, the most straightforward control measures rely on the suppression or manipulation of vector natural populations. A number of environmental-friendly methods using mass releases of sterilizing males are currently under development. However, these strategies are still lacking an efficient sexing method required for production of males at an industrial scale. Results We present the first Genetic Sexing Strain (GSS) in Ae. albopictus, hereafter referred as Tikok, obtained by sex linkage of the rdl gene conferring dieldrin resistance. Hatch rate, larval survival and sex ratio were followed during twelve generations. The use of dieldrin at the third larval stage allowed selecting 98 % of males on average. Conclusion A good production rate of Tikok males makes this GSS suitable for any control method based on mass production of Ae. albopictus males. Despite limitations resulting from reduced egg hatch as well as the nature of the used insecticide, the construction of this GSS paves the way for industrial sex separation of Ae. albopictus
- …