9 research outputs found

    Engineering and functional immobilization of opioid receptors

    Get PDF
    Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the mu-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads). Starting with the intrinsically more stable kappa-opioid receptor (KOR), we optimized the conditions (i.e. detergents and stabilizing ligands) for receptor extraction from lipid bilayers of HEK293T cells to obtain maximal amounts of functional, immobilized receptor. After immobilization, the ligand binding profile remains the same as observed for the membrane-embedded receptor. For the immobilized wild-type mu-opioid receptor, however, no conditions were found under which ligand binding capacity was retained. To solve this problem, we engineered the receptor chimera KKM where the N-terminus and the first transmembrane helix (TM1) of wild-type MOR is exchanged for the homologous receptor parts of the wild-type KOR. This hybrid receptor behaves exactly as the wild-type MOR in functional assays. Interestingly, the modified MOR is expressed at six times higher levels than wild-type MOR and is similarly stable as wild-type KOR after immobilization. Hence the immobilized MOR, represented by the chimera KKM, is now also amenable for biophysical characterization. These results are encouraging for future stability engineering of GPCR

    Engineering and functional immobilization of opioid receptors

    Full text link
    Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the mu-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads). Starting with the intrinsically more stable kappa-opioid receptor (KOR), we optimized the conditions (i.e. detergents and stabilizing ligands) for receptor extraction from lipid bilayers of HEK293T cells to obtain maximal amounts of functional, immobilized receptor. After immobilization, the ligand binding profile remains the same as observed for the membrane-embedded receptor. For the immobilized wild-type mu-opioid receptor, however, no conditions were found under which ligand binding capacity was retained. To solve this problem, we engineered the receptor chimera KKM where the N-terminus and the first transmembrane helix (TM1) of wild-type MOR is exchanged for the homologous receptor parts of the wild-type KOR. This hybrid receptor behaves exactly as the wild-type MOR in functional assays. Interestingly, the modified MOR is expressed at six times higher levels than wild-type MOR and is similarly stable as wild-type KOR after immobilization. Hence the immobilized MOR, represented by the chimera KKM, is now also amenable for biophysical characterization. These results are encouraging for future stability engineering of GPCRs

    6 | Antilopes – Arzuges

    No full text
    Ouvrage publiĂŠ avec le concours et sur la recommandation du Conseil international de la philosophie et des sciences humaines (UNESCO). Ce volume, Ă  l'origine publiĂŠ par Edisud, est dĂŠsormais diffusĂŠ par les Editions Peeters sous l'Isbn : 978-2-85744-324-7

    Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals

    No full text
    corecore