6,885 research outputs found

    Torture

    Get PDF

    Entanglement generation in spatially separated systems using quantum walk

    Full text link
    We present a novel scheme to generate entanglement between two spatially separated systems. The scheme makes use of spatial entanglement generated by a single-particle quantum walk which is used to entangle two spatially separated, not necessarily correlated, systems. This scheme can be used to entangle any two systems which can interact with the spatial modes entangled during the quantum walk evolution. A notable feature is that we can control the quantum walk dynamics and its ability to localize leads to a substantial control and improvement in the entanglement output.Comment: 9 pages, 5 figure

    Formation of double ring patterns on Co2MnSi Heusler alloy thin film by anodic oxidation under scanning probe microscope

    Full text link
    Double ring formation on Co2MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring forma-tion is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storage applications.Comment: 7 pages, 5 figure

    Structure and function of negative feedback loops at the interface of genetic and metabolic networks

    Get PDF
    The molecular network in an organism consists of transcription/translation regulation, protein-protein interactions/modifications and a metabolic network, together forming a system that allows the cell to respond sensibly to the multiple signal molecules that exist in its environment. A key part of this overall system of molecular regulation is therefore the interface between the genetic and the metabolic network. A motif that occurs very often at this interface is a negative feedback loop used to regulate the level of the signal molecules. In this work we use mathematical models to investigate the steady state and dynamical behaviour of different negative feedback loops. We show, in particular, that feedback loops where the signal molecule does not cause the dissociation of the transcription factor from the DNA respond faster than loops where the molecule acts by sequestering transcription factors off the DNA. We use three examples, the bet, mer and lac systems in E. coli, to illustrate the behaviour of such feedback loops.Comment: 8 pages, 4 figure
    corecore