89 research outputs found

    Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds

    Get PDF
    Background: The muscle fiber number and fiber composition of muscle is largely determined during prenatal development. In order to discover genes that are involved in determining adult muscle phenotypes, we studied the gene expression profile of developing fetal bovine longissimus muscle from animals with two different genetic backgrounds using a bovine cDNA microarray. Fetal longissimus muscle was sampled at 4 stages of myogenesis and muscle maturation: primary myogenesis (d 60), secondary myogenesis (d 135), as well as beginning (d 195) and final stages (birth) of functional differentiation of muscle fibers. All fetuses and newborns (total n = 24) were from Hereford dams and crossed with either Wagyu (high intramuscular fat) or Piedmontese (GDF8 mutant) sires, genotypes that vary markedly in muscle and compositional characteristics later in postnatal life. Results: We obtained expression profiles of three individuals for each time point and genotype to allow comparisons across time and between sire breeds. Quantitative reverse transcription-PCR analysis of RNA from developing longissimus muscle was able to validate the differential expression patterns observed for a selection of differentially expressed genes, with one exception. We detected large-scale changes in temporal gene expression between the four developmental stages in genes coding for extracellular matrix and for muscle fiber structural and metabolic proteins. FSTL1 and IGFBP5 were two genes implicated in growth and differentiation that showed developmentally regulated expression levels in fetal muscle. An abundantly expressed gene with no functional annotation was found to be developmentally regulated in the same manner as muscle structural proteins. We also observed differences in gene expression profiles between the two different sire breeds. Wagyu-sired calves showed higher expression of fatty acid binding protein 5 (FABP5) RNA at birth. The developing longissimus muscle of fetuses carrying the Piedmontese mutation shows an emphasis on glycolytic muscle biochemistry and a large-scale up-regulation of the translational machinery at birth. We also document evidence for timing differences in differentiation events between the two breeds. Conclusion: Taken together, these findings provide a detailed description of molecular events accompanying skeletal muscle differentiation in the bovine, as well as gene expression differences that may underpin the phenotype differences between the two breeds. In addition, this study has highlighted a non-coding RNA, which is abundantly expressed and developmentally regulated in bovine fetal muscle

    The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep

    Get PDF
    peer-reviewedMembers of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional domains of the protein suggesting co-evolution of the sense and antisense genes

    A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development

    Get PDF
    Background: The developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes.Results: Using an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development) and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development) and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal - postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune response while the latter principally involved functions associated with transcriptional regulation of metabolic processes.Conclusions: It is concluded that during late skeletal muscle development there are substantial and coordinated changes in the transcription of a large number of genes many of which are probably triggered by increased estrogen levels. These changes probably underpin the adaption of muscle to new physiological demands in the postnatal environment

    Proteome and nutritional shifts observed in hordein double-mutant barley lines

    Get PDF
    Lysine is the most limiting essential amino acid in cereals, and efforts have been made over the decades to improve the nutritional quality of these grains by limiting storage protein accumulation and increasing lysine content, while maintaining desired agronomic traits. The single lys3 mutation in barley has been shown to significantly increase lysine content but also reduces grain size. Herein, the regulatory effect of the lys3 mutation that controls storage protein accumulation as well as a plethora of critically important processes in cereal seeds was investigated in double mutant barley lines. This was enabled through the generation of three hordein double-mutants by inter-crossing three single hordein mutants, that had all been backcrossed three times to the malting barley cultivar Sloop. Proteome abundance measurements were integrated with their phenotype measurements; proteins were mapped to chromosomal locations and to their corresponding functional classes. These models enabled the prediction of previously unknown points of crosstalk that connect the impact of lys3 mutations to other signalling pathways. In combination, these results provide an improved understanding of how the mutation at the lys3 locus remodels cellular functions and impact phenotype that can be used in selective breeding to generate favourable agronomic traits

    The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep

    Get PDF
    Members of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional domains of the protein suggesting co-evolution of the sense and antisense genes

    Protein extraction protocols for optimal proteome measurement and arginine kinase quantitation from cricket Acheta domesticus for foodsafety assessment

    Get PDF
    Insects have been consumed by people for millennia and have recently been proposed as a complementary, sustainable source of protein to feed the world’s growing population. Insects and crustaceans both belong to the arthropod family. Crustacean (shellfish) allergies are common and potentially severe; hence, the cross-reactivity of the immune system with insect proteins is a potential health concern. Herein, LC-MS/MS was used to explore the proteome of whole, roasted whole and roasted powdered cricket products. Eight protein extraction protocols were compared using the total number of protein and distinct peptide identifications. Within these data, 20 putative allergens were identified, of which three were arginine kinase (AK) proteoforms. Subsequently, a multiple reaction monitoring MS assay was developed for the AK proteoforms and applied to a subset of extracts. This targeted assay demonstrated that allergen abundance/detectability varies according to the extraction method as well as the food processing method

    Protein extraction protocols for optimal proteome measurement and arginine kinase quantitation from cricket Acheta domesticus for food safety assessment

    Get PDF
    © 2021 Elsevier Ltd Insects have been consumed by people for millennia and have recently been proposed as a complementary, sustainable source of protein to feed the world\u27s growing population. Insects and crustaceans both belong to the arthropod family. Crustacean (shellfish) allergies are common and potentially severe; hence, the cross-reactivity of the immune system with insect proteins is a potential health concern. Herein, LC-MS/MS was used to explore the proteome of whole, roasted whole and roasted powdered cricket products. Eight protein extraction protocols were compared using the total number of protein and distinct peptide identifications. Within these data, 20 putative allergens were identified, of which three were arginine kinase (AK) proteoforms. Subsequently, a multiple reaction monitoring MS assay was developed for the AK proteoforms and applied to a subset of extracts. This targeted assay demonstrated that allergen abundance/detectability varies according to the extraction method as well as the food processing method

    Comparison of protein extraction protocols and allergen mapping from black soldier fly Hermetia illucens

    Get PDF
    Exploration of important insect proteins — including allergens — and proteomes can be limited by protein extraction buffer selection and the complexity of the proteome. Herein, LC-MS/MS-based proteomics experiments were used to assess the protein extraction efficiencies for a suite of extraction buffers and the effect of ingredient processing on proteome and allergen detection. Discovery proteomics revealed that SDS-based buffer yields the maximum number of protein groups from three types of BSF samples. Bioinformatic analysis revealed that buffer composition and ingredient processing could influence allergen detection. Upon applying multi-level filtering criteria, 33 putative allergens were detected by comparing the detected BSF proteins to sequences from public allergen protein databases. A targeted LC-MRM-MS assay was developed for the pan-allergen tropomyosin and used to assess the influence of buffer composition and ingredient processing using peptide abundance measurements. Significance: We demonstrated that the selection of protein extraction buffer and the processing method could influence protein yield and cross-reactive allergen detection from processed and un-processed black soldier fly (BSF) samples. In total, 33 putative allergens were detected by comparing the detected BSF proteins to sequences from public allergen protein databases. An LC-MRM-MS assay was developed for tropomyosin, indicating the importance of buffer selection and processing conditions to reduce BSF samples\u27 allergenicity

    Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with protein-coding loci

    Get PDF
    Twenty-one microsatellite loci in 11 populations of Asian water buffalo (eight swamp, three river type) were analysed and, within and among populations, genetic variability was compared with results from 25 polymorphic protein-coding loci. Within-population mean heterozygosity ranged from 0·380–0·615, approximately twice that estimated from the protein-coding loci (0·184– 0·346). Only eight significant departures from Hardy–Weinberg equilibrium (involving four loci) were detected; global tests showed significant heterozygote deficiencies for these four loci. Non-amplifying alleles are likely to be segregating in some or all populations for one of these loci, and probably for the other three. There was significant differentiation between the swamp and river types of water buffalo, and among populations within each buffalo type. Estimates of θ (measure of population differentiation) for each locus for the eight swamp populations were all highly significant (mean θ = 0·168 ± 0·018). Mean θ for protein-coding loci was not significantly different (0·182 ± 0·041). The variance among protein-coding loci was significantly higher than among microsatellite loci, suggesting balancing selection affecting allele frequencies at some protein-coding loci. Genetic distances show clear separation of the swamp and river types, which were estimated to have diverged at least 10 000–15 000 years ago. The topology of the swamp populations’ microsatellite tree is consistent with their geographical distribution and their presumed spread through south-east Asia. By contrast, the tree based on the protein-coding loci distances is quite different, being clearly distorted by a bottleneck effect in one population, and possibly in at least two others. As many domestic livestock breeds are possibly descended from small numbers of founders, microsatellite-based trees are to be preferred in assessing breed genetic relationships

    Genetic architecture of gene expression in ovine skeletal muscle

    Get PDF
    In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle. Results The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial function and transcriptional regulation. Conclusions This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and translation control, and protein catabolism mediated by regulated proteolysis is likely to be the primary determinant of the genetic merit for the muscling trait in this sheep population. There is also evidence that high genetic merit for muscling is associated with a fibre type shift toward fast glycolytic fibres. This study provides insight into mechanisms, presumably subject to strong artificial selection, that underpin enhanced muscling in sheep populations
    corecore