575 research outputs found

    Improving Whole Slide Segmentation Through Visual Context - A Systematic Study

    Full text link
    While challenging, the dense segmentation of histology images is a necessary first step to assess changes in tissue architecture and cellular morphology. Although specific convolutional neural network architectures have been applied with great success to the problem, few effectively incorporate visual context information from multiple scales. With this paper, we present a systematic comparison of different architectures to assess how including multi-scale information affects segmentation performance. A publicly available breast cancer and a locally collected prostate cancer datasets are being utilised for this study. The results support our hypothesis that visual context and scale play a crucial role in histology image classification problems

    Transport properties for a Luttinger liquid wire with Rashba spin-orbit coupling and Zeeman splitting

    Full text link
    We study the transport properties for a Luttinger-liquid (LL) quantum wire in the presence of both Rashba spin-orbit coupling (SOC) and a weak external in-plane magnetic field. The bosonized Hamiltonian of the system with an externally applied longitudinal electric field is established. And then the equations of motion for the bosonic phase fields are solved in the Fourier space, with which the both charge and spin conductivities for the system are calculated analytically based on the linear response theory. Generally, the ac conductivity is an oscillation function of the strengths of electron-electron interaction, Rashba SOC and magnetic field, as well as the driving frequency and the measurement position in the wire. Through analysis with some examples it is demonstrated that the modification on the conductivity due to electron-electron interactions is more remarkable than that due to SOC, while the effects of SOC and Zeeman splitting on the conductivity are very similar. The spin-polarized conductivities for the system in the absence of Zeeman effect or SOC are also discussed, respectively. The ratio of the spin-polarized conductivities σ↑/σ↓\sigma_\uparrow/\sigma_\downarrow is dependent of the electron-electron interactions for the system without SOC, while it is independent of the electron-electron interactions for the system without Zeeman splitting.Comment: 10 pages, 8 figure

    Spin-polarized electric currents in quantum transport through tubular two-dimensional electron gases

    Full text link
    Scattering theory is employed to derive a Landauer-type formula for the spin and the charge currents, through a finite region where spin-orbit interactions are effective. It is shown that the transmission matrix yields the spatial direction and the magnitude of the spin polarization. This formula is used to study the currents through a tubular two-dimensional electron gas. In this cylindrical geometry, which may be realized in experiment, the transverse conduction channels are not mixed (provided that the spin-orbit coupling is uniform). It is then found that for modest boundary scattering, each step in the quantized conductance is split into two, and the new steps have a non-zero spin conductance, with the spin polarization perpendicular to the direction of the current.Comment: 6 pages, 5 figure

    Interplay of spin-orbit coupling and Zeeman splitting in the absorption lineshape of 2D fermions

    Full text link
    We suggest that electron spin resonance (ESR) experiment can be used as a probe of spinon excitations of hypothetical spin-liquid state of frustrated antiferromagnet in the presence of asymmetric Dzyaloshinskii-Moriya (DM) interaction. We describe assumptions under which the ESR response is reduced to the response of 2D electron gas with Rashba spin-orbit coupling. Unlike previous treatments, the spin-orbit coupling, \Delta_{SO}, is not assumed small compared to the Zeeman splitting, \Delta_Z. We demonstrate that ESR response diverges at the edges of the absorption spectrum for ac magnetic field perpendicular to the static field. At the compensation point, \Delta_{SO}\approx \Delta_Z, the broad absorption spectrum exhibits features that evolve with temperature, T, even when T is comparable to the Fermi energy.Comment: 11 pages, 6 figure

    Multidimensional Instability and Dynamics of Spin Avalanches in Crystals of Nanomagnets

    Get PDF
    We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping fronts in organic semiconductors

    Suppression of spin-orbit effects in 1D system

    Full text link
    We report the absence of spin effects such as spin-galvanic effect, spin polarization and spin current under static electric field and inter-spin-subband absorption in 1D system with spin-orbit interaction of arbitrary form. It was also shown that the accounting for the direct interaction of electron spin with magnetic field violates this statement.Comment: 8 pages, 1Figur

    Hartree-Fock ground state of the two-dimensional electron gas with Rashba spin-orbit interaction

    Get PDF
    We search for the uniform Hartree-Fock ground state of the two-dimensional electron gas formed in semiconductor heterostructures including the Rashba spin-orbit interaction. We identify two competing quantum phases: a ferromagnetic one with partial spin polarization in the perpendicular direction and a paramagnetic one with in-plane spin. We present a phase diagram in terms of the relative strengths of the Rashba to the Coulomb interaction and the electron density. We compare our theoretical description with existing experimental results obtained in GaAs-AlGaAs heterostructures.Comment: 5 pages, 2 figure
    • …
    corecore