1,839 research outputs found

    Double-exciton component of the cyclotron spin-flip mode in a quantum Hall ferromagnet

    Full text link
    We report on the calculation of the cyclotron spin-flip excitation (CSFE) in a spin-polarized quantum Hall system at unit filling. This mode has a double-exciton component which contributes to the CSFE correlation energy but can not be found by means of a mean field approach. The result is compared with available experimental data.Comment: 9 pages, 2 figure

    Resonance-like electrical control of electron spin for microwave measurement

    Full text link
    We demonstrate that the spin-polarized electron current can interact with a microwave electric field in a resonant manner. The spin-orbit interaction gives rise to an effective magnetic field proportional to the electric current. In the presence of both dc and ac electric field components, electron spin resonance occurs if the ac frequency matches with the spin precession frequency that is controlled by the dc field. In a device consisting of two spin-polarized contacts connected by a two-dimensional channel, this mechanism allows electrically tuned detection of the ac signal frequency and amplitude. For GaAs, such detection is effective in the frequency domain around tens of gigahertz.Comment: 10 pages, 2 figure

    Turbulence in Binary Bose-Einstein Condensates Generated by Highly Non-Linear Rayleigh-Taylor and Kelvin-Helmholtz Instabilities

    Get PDF
    Quantum turbulence (QT) generated by the Rayleigh-Taylor instability in binary immiscible ultracold 87Rb atoms at zero temperature is studied theoretically. We show that the quantum vortex tangle is qualitatively different from previously considered superfluids, which reveals deep relations between QT and classical turbulence. The present QT may be generated at arbitrarily small Mach numbers, which is a unique property not found in previously studied superfluids. By numerical solution of the coupled Gross-Pitaevskii equations we find that the Kolmogorov scaling law holds for the incompressible kinetic energy. We demonstrate that the phenomenon may be observed in the laboratory.Comment: Revised version. 7 pages, 8 figure

    Quantum transport in a curved one-dimensional quantum wire with spin-orbit interactions

    Full text link
    The one-dimensional effective Hamiltonian for a planar curvilinear quantum wire with arbitrary shape is proposed in the presence of the Rashba spin-orbit interaction. Single electron propagation through a device of two straight lines conjugated with an arc has been investigated and the analytic expressions of the reflection and transmission probabilities have been derived. The effects of the device geometry and the spin-orbit coupling strength α\alpha on the reflection and transmission probabilities and the conductance are investigated in the case of spin polarized electron incidence. We find that no spin-flip exists in the reflection of the first junction. The reflection probabilities are mainly influenced by the arc angle and the radius, while the transmission probabilities are affected by both spin-orbit coupling and the device geometry. The probabilities and the conductance take the general behavior of oscillation versus the device geometry parameters and α\alpha . Especially the electron transportation varies periodically versus the arc angle θw\theta_{w}. We also investigate the relationship between the conductance and the electron energy, and find that electron resonant transmission occurs for certain energy. Finally, the electron transmission for the incoming electron with arbitrary state is considered. For the outgoing electron, the polarization ratio is obtained and the effects of the incoming electron state are discussed. We find that the outgoing electron state can be spin polarization and reveal the polarized conditions.Comment: 7 pages, 8 figure

    Anomalous Hall effect in a two-dimensional electron gas with spin-orbit interaction

    Full text link
    We discuss the mechanism of anomalous Hall effect related to the contribution of electron states below the Fermi surface (induced by the Berry phase in momentum space). Our main calculations are made within a model of two-dimensional electron gas with spin-orbit interaction of the Rashba type, taking into account the scattering from impurities. We demonstrate that such an "intrinsic" mechanism can dominate but there is a competition with the impurity-scattering mechanism, related to the contribution of states in the vicinity of Fermi surface. We also show that the contribution to the Hall conductivity from electron states close to the Fermi surface has the intrinsic properties as well.Comment: 9 pages, 6 figure

    Spin relaxation in an InAs quantum dot in the presence of terahertz driving fields

    Full text link
    The spin relaxation in a 1D InAs quantum dot with the Rashba spin-orbit coupling under driving THz magnetic fields is investigated by developing the kinetic equation with the help of the Floquet-Markov theory, which is generalized to the system with the spin-orbit coupling, to include both the strong driving field and the electron-phonon scattering. The spin relaxation time can be effectively prolonged or shortened by the terahertz magnetic field depending on the frequency and strength of the terahertz magnetic field. The effect can be understood as the sideband-modulated spin-phonon scattering. This offers an additional way to manipulate the spin relaxation time.Comment: 8 pages, 1 figure, to be published in PR

    Spin orbit coupling in bulk ZnO and GaN

    Full text link
    Using group theory and Kane-like kp\mathbf{k\cdot p} model together with the L\"owdining partition method, we derive the expressions of spin-orbit coupling of electrons and holes, including the linear-kk Rashba term due to the intrinsic structure inversion asymmetry and the cubic-kk Dresselhaus term due to the bulk inversion asymmetry in wurtzite semiconductors. The coefficients of the electron and hole Dresselhaus terms of ZnO and GaN in wurtzite structure and GaN in zinc-blende structure are calculated using the nearest-neighbor sp3sp^3 and sp3ssp^3s^\ast tight-binding models separately.Comment: 9 pages, 6 figures, to be published in J. Appl. Phy

    Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction

    Full text link
    In a ferromagnetic metal layer, the coupled charge and spin diffusion equations are obtained in the presence of both Rashba spin-orbit interaction and magnetism. The mis-alignment between the magnetization and the non-equilibrium spin density induced by the Rashba field gives rise to Rashba spin torque acting on the ferromagnetic order parameter. In a general form, we find that the Rashba torque consists of both in-plane and out-of-plane components, ie T=Ty^×m^+Tm^×(y^×m^)\bm{T}=T_{\bot}\hat{\bm{y}}\times{\hat{\bm m}}+T_{\parallel}{\hat{\bm m}}\times({\hat{\bm y}}\times{\hat{\bm m}}). Numerical simulations on a two dimensional nano-wire discuss the impact of diffusion on the Rashba torque, which reveals a large enhancement to the ratio T/TT_{\parallel}/T_{\bot} for thin wires. Our theory provides an explanation to the mechanism that drives the magnetization switching in a single ferromagnet as observed in the recent experiments.Comment: 5 pages and 3 figure

    Spin-orbit excitations of quantum wells

    Full text link
    Confinement asymmetry effects on the photoabsorption of a quantum well are discussed by means of a sum-rules approach using a Hamiltonian including a Rashba spin-orbt coupling. We show that while the strength of the excitation is zero when the spin-orbit coupling is neglected, the inclusion of the spin-orbit interaction gives rise to a non zero strength and mean excitation energy in the far-infrared region. A simple expression for these quantities up to the second order in the Rashba parameter was derived. The effect of two-body Coulomb interaction is then studied by means of a Quantum Monte Carlo calculation, showing that electron-electron correlations induce only a small deviation from the independent particle model result
    corecore