26 research outputs found
Pot-in-pot reactions: a simple and green approach to efficient organic synthesis
Incompatible organic reactions impede efficient green synthesis by making multi-component or cascade reactions a big challenge. This review highlights pot-in-pot reactions (multiple reactions carried out in one pot by separating key reactions with a thin polymeric membrane) as an efficient, green synthetic alternative to conventional synthesis. We discuss the advantages of homogeneous processes to develop new cascade reaction sequences by reviewing the use of polymeric thimbles as selective semi-permeable walls. These thimbles allow small organic molecules to diffuse through while retaining polar reagents, polar solvents, and/or organometallic catalysts. The dynamic and versatile nature of this technique is demonstrated by performing 2- and 3-step cascade reactions in one glass pot. A pot-in-pot reaction approach to synthesis circumvents the need to isolate intermediates, or handling of toxic/unpleasant by-products, therefore enabling synthesis of otherwise challenging molecules, improving the efficiency, or enabling greener approaches to modular synthesis
Recommended from our members
Paramagnetic Ionic Liquids for Measurements of Density Using Magnetic Levitation
Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value, or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation–anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.Chemistry and Chemical Biolog
Recommended from our members
Using Magnetic Levitation to Separate Mixtures of Crystal Polymorphs
Magnetische Levitation (MagLev) ist eine einfache Trennmethode für Kristallpolymorphe mit Dichteunterschieden (Δρ) von nur 0.001 g cm−3. Für vier organische Verbindungen wurden dichtebasierte Trennungen verschiedener kristalliner Formen gezeigt: 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophencarbonitril, Sulfathiazol, Carbamazepin und trans-Zimtsäure.Chemistry and Chemical Biolog
Pot-in-pot reactions: a simple and green approach to efficient organic synthesis
Incompatible organic reactions impede efficient green synthesis by making multi-component or cascade reactions a big challenge. This review highlights pot-in-pot reactions (multiple reactions carried out in one pot by separating key reactions with a thin polymeric membrane) as an efficient, green synthetic alternative to conventional synthesis. We discuss the advantages of homogeneous processes to develop new cascade reaction sequences by reviewing the use of polymeric thimbles as selective semi-permeable walls. These thimbles allow small organic molecules to diffuse through while retaining polar reagents, polar solvents, and/or organometallic catalysts. The dynamic and versatile nature of this technique is demonstrated by performing 2- and 3-step cascade reactions in one glass pot. A pot-in-pot reaction approach to synthesis circumvents the need to isolate intermediates, or handling of toxic/unpleasant by-products, therefore enabling synthesis of otherwise challenging molecules, improving the efficiency, or enabling greener approaches to modular synthesis.This article is published as Atkinson, M. B. J., S. Oyola-Reynoso, R. E. Luna, D. K. Bwambok, and M. M. Thuo. "Pot-in-pot reactions: a simple and green approach to efficient organic synthesis." RSC Advances 5, no. 1 (2015): 597-607, doi:10.1039/C4RA13506G. Posted with permission.</p
Application of Ionic Liquids in Pot-in-Pot Reactions
Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction potalbeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first pot. The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion modelsFickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction
Paramagnetic Ionic Liquids for Measurements of Density Using Magnetic Levitation
Paramagnetic
ionic liquids (PILs) provide new capabilities to measurements
of density using magnetic levitation (MagLev). In a typical measurement,
a diamagnetic object of unknown density is placed in a container containing
a PIL. The container is placed between two magnets (typically NdFeB,
oriented with like poles facing). The density of the diamagnetic object
can be determined by measuring its position in the magnetic field
along the vertical axis (levitation height, <i>h</i>), either
as an absolute value or relative to internal standards of known density.
For density measurements by MagLev, PILs have three advantages over
solutions of paramagnetic salts in aqueous or organic solutions: (i)
negligible vapor pressures; (ii) low melting points; (iii) high thermal
stabilities. In addition, the densities, magnetic susceptibilities,
glass transition temperatures, thermal decomposition temperatures,
viscosities, and hydrophobicities of PILs can be tuned over broad
ranges by choosing the cation–anion pair. The low melting points
and high thermal stabilities of PILs provide large liquidus windows
for density measurements. This paper demonstrates applications and
advantages of PILs in density-based analyses using MagLev
QCM Sensor Arrays, Electroanalytical Techniques and NIR Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs
Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products
Qcm sensor arrays, electroanalytical techniques and nir spectroscopy coupled to multivariate analysis for quality assessment of food products, raw materials, ingredients and foodborne pathogen detection: Challenges and breakthroughs\u3csup\u3e†\u3c/sup\u3e
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products
Minimizing human infection from Escherichia coli O157:H7 using GUMBOS
OBJECTIVES: Reduction in faecal shedding of Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) in food-producing animals is a viable strategy to minimize human disease initiated by exposure to these microorganisms. To this end, an intervention strategy involving the electrostatic hybridization of two commonly used anti-infective agents for veterinary practice (i.e. chlorhexidine and ampicillin) was evaluated to curtail EHEC-transmitted disease from ruminant sources. Chlorhexidine di-ampicillin is a novel group of uniform material based on organic salts (GUMBOS) with inherent in vitro antibacterial activity that comes from its parent antimicrobial ions, chlorhexidine and ampicillin. METHODS: Antibacterial activities for chlorhexidine diacetate, sodium ampicillin, chlorhexidine di-ampicillin and stoichiometrically equivalent 1 : 2 chlorhexidine diacetate : sodium ampicillin were assessed using the serial 2-fold dilution method and time–kill studies against seven isolates of E. coli O157:H7 and one non-pathogenic E. coli 25922. Further studies to investigate synergistic interactions of reacted and stoichiometrically equivalent unreacted antimicrobial agents at MICs and possible mechanisms were also investigated. RESULTS: Synergism and in vitro antibacterial activities against EHEC were observed in this study, which suggests chlorhexidine di-ampicillin could be a useful reagent in reducing EHEC transmission and minimizing EHEC-associated infections. Likewise, chlorhexidine di-ampicillin reduced HeLa cell toxicity as compared with chlorhexidine diacetate or the stoichiometric combination of antimicrobial agents. Further results suggest that the mechanisms of action of chlorhexidine di-ampicillin and chlorhexidine diacetate against E. coli O157:H7 are similar. CONCLUSIONS: Reacting antimicrobial GUMBOS as indicated in this study may enhance the approach to current combination drug therapeutic strategies for EHEC disease control and prevention
Electro-optical characterization of cyanine-based GUMBOS and nanoGUMBOS
© 2014, The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht. Over the last decade in materials science, molecular electronics has emerged as one of the most rapidly developing interdisciplinary research areas with the prospects of ultimate miniaturization and integration of functional organic species with traditional silicon based semiconductor technology. To this end, fundamental studies to investigate the electrical and optical properties of organic nanomaterials deserve special attention. In this work, conductive probe atomic force microscopy (CP-AFM) and Raman spectroscopy have been performed on a new class of ionic materials, referred to as group of uniform materials based on organic salts (GUMBOS) and nanoparticles derived from these GUMBOS, termed as nanoGUMBOS. The GUMBOS investigated in this study are 1,1′-Diethyl-2,2′-cyanine bis (trifluoromethanesulfonyl) imide ([PIC][NTf2]) and 1,1′-Diethyl-2,2′-cyanine bis (pentafluoromethanesulfonyl) imide ([PIC][BETI]), which have been synthesized by use of a facile, template free anion exchange reaction between their respective parent compounds, followed by an ultrasonication assisted, additive free re-precipitation reaction to obtain the nanoscale particles (nanoGUMBOS). The ([PIC][NTf2] nanoGUMBOS were found to self-assemble into distinct diamond-like, trapezoid structures whereas [PIC][BETI] exhibited rod-like structures. [PIC][NTf2] nanoGUMBOS induced ~25 and ~38 times enhancement in the Raman signal intensity as compared to the parent compound [PIC][I] and [PIC][BETI] nanoGUMBOS respectively. In conjunction with the results of Raman spectra, the current-voltage (I-V) data obtained by CP-AFM are also presented as first-time evidence of electrical performance exhibited by these unique class of materials. The results reported in this study are indicative of their potential incorporation into next generation organic thin film applications in optoelectronics, dye-sensitized solar cells, and chemical sensors