87 research outputs found
A novel mutation in the calcium-sensing receptor gene in an Irish pedigree showing familial hypocalciuric hypercalcemia: a case report
Abstract Introduction Familial hypocalciuric hypercalcemia is a rare autosomal dominant disorder characterized by asymptomatic and non-progressive hypercalcemia due to mutations of the calcium-sensing receptor gene. Disorders of calcium metabolism are very common in the elderly, and they can coexist with familial hypocalciuric hypercalcemia in affected families. Case presentation We describe an Irish family with hypercalcemia and hypocalciuria. The proband, an 80-year-old Irish woman, presented with hypercalcemia, relative hypocalciuria, and an elevated parathormone level. She also had chronic kidney disease stage 3 and vitamin D deficiency. Two of her sons were also found to be hypercalcemic and hypocalciuric. DNA sequencing identified a novel missense inactivating mutation in the calcium sensing-receptor gene of the proband and her two hypercalcemic sons. Conclusion Familial hypocalciuric hypercalcemia due to a novel mutation in the calcium-sensing receptor gene was diagnosed in the proband and her two sons. Disorders of calcium metabolism can be multifarious in the elderly. We suggest that testing first degree relatives for calcium levels and DNA sequencing may have a role in the assessment of elderly patients with parathormone-related hypercalcemia.</p
Phase transitions of quasistationary states in the Hamiltonian Mean Field model
The out-of-equilibrium dynamics of the Hamiltonian Mean Field (HMF) model is
studied in presence of an externally imposed magnetic field h. Lynden-Bell's
theory of violent relaxation is revisited and shown to adequately capture the
system dynamics, as revealed by direct Vlasov based numerical simulations in
the limit of vanishing field. This includes the existence of an
out-of-equilibrium phase transition separating magnetized and non magnetized
phases. We also monitor the fluctuations in time of the magnetization, which
allows us to elaborate on the choice of the correct order parameter when
challenging the performance of Lynden-Bell's theory. The presence of the field
h removes the phase transition, as it happens at equilibrium. Moreover, regions
with negative susceptibility are numerically found to occur, in agreement with
the predictions of the theory.Comment: 6 pages, 7 figure
E10 and SO(9,9) invariant supergravity
We show that (massive) D=10 type IIA supergravity possesses a hidden rigid
SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional
reduction to one (time-like) dimension. We explicitly construct the associated
locally supersymmetric Lagrangian in one dimension, and show that its bosonic
sector, including the mass term, can be equivalently described by a truncation
of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a
decomposition of E10 under its so(9,9) subalgebra. This decomposition is
presented up to level 10, and the even and odd level sectors are identified
tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further
truncation to the level \ell=0 sector yields a model related to the reduction
of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated
to the latter, is shown to be a proper subalgebra of E10, in accord with the
embedding of type I into type IIA supergravity. The corresponding decomposition
of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable
by downloading sourc
Experimental perspectives for systems based on long-range interactions
The possibility of observing phenomena peculiar to long-range interactions,
and more specifically in the so-called Quasi-Stationary State (QSS) regime is
investigated within the framework of two devices, namely the Free-Electron
Laser (FEL) and the Collective Atomic Recoil Laser (CARL). The QSS dynamics has
been mostly studied using the Hamiltonian Mean-Field (HMF) toy model,
demonstrating in particular the presence of first versus second order phase
transitions from magnetized to unmagnetized regimes in the case of HMF. Here,
we give evidence of the strong connections between the HMF model and the
dynamics of the two mentioned devices, and we discuss the perspectives to
observe some specific QSS features experimentally. In particular, a dynamical
analog of the phase transition is present in the FEL and in the CARL in its
conservative regime. Regarding the dissipative CARL, a formal link is
established with the HMF model. For both FEL and CARL, calculations are
performed with reference to existing experimental devices, namely the
FERMI@Elettra FEL under construction at Sincrotrone Trieste (Italy) and the
CARL system at LENS in Florence (Italy)
K(E10), Supergravity and Fermions
We study the fermionic extension of the E10/K(E10) coset model and its
relation to eleven-dimensional supergravity. Finite-dimensional spinor
representations of the compact subgroup K(E10) of E(10,R) are studied and the
supergravity equations are rewritten using the resulting algebraic variables.
The canonical bosonic and fermionic constraints are also analysed in this way,
and the compatibility of supersymmetry with local K(E10) is investigated. We
find that all structures involving A9 levels 0,1 and 2 nicely agree with
expectations, and provide many non-trivial consistency checks of the existence
of a supersymmetric extension of the E10/K(E10) coset model, as well as a new
derivation of the `bosonic dictionary' between supergravity and coset
variables. However, there are also definite discrepancies in some terms
involving level 3, which suggest the need for an extension of the model to
infinite-dimensional faithful representations of the fermionic degrees of
freedom.Comment: 50 page
Models with short and long-range interactions: phase diagram and reentrant phase
We study the phase diagram of two different Hamiltonians with competiting
local, nearest-neighbour, and mean-field couplings. The first example
corresponds to the HMF Hamiltonian with an additional short-range interaction.
The second example is a reduced Hamiltonian for dipolar layered spin
structures, with a new feature with respect to the first example, the presence
of anisotropies. The two examples are solved in both the canonical and the
microcanonical ensemble using a combination of the min-max method with the
transfer operator method. The phase diagrams present typical features of
systems with long-range interactions: ensemble inequivalence, negative specific
heat and temperature jumps. Moreover, in a given range of parameters, we report
the signature of phase reentrance. This can also be interpreted as the presence
of azeotropy with the creation of two first order phase transitions with
ensemble inequivalence, as one parameter is varied continuously
Finite and infinite-dimensional symmetries of pure N=2 supergravity in D=4
We study the symmetries of pure N=2 supergravity in D=4. As is known, this
theory reduced on one Killing vector is characterised by a non-linearly
realised symmetry SU(2,1) which is a non-split real form of SL(3,C). We
consider the BPS brane solutions of the theory preserving half of the
supersymmetry and the action of SU(2,1) on them. Furthermore we provide
evidence that the theory exhibits an underlying algebraic structure described
by the Lorentzian Kac-Moody group SU(2,1)^{+++}. This evidence arises both from
the correspondence between the bosonic space-time fields of N=2 supergravity in
D=4 and a one-parameter sigma-model based on the hyperbolic group SU(2,1)^{++},
as well as from the fact that the structure of BPS brane solutions is neatly
encoded in SU(2,1)^{+++}. As a nice by-product of our analysis, we obtain a
regular embedding of the Kac-Moody algebra su(2,1)^{+++} in e_{11} based on
brane physics.Comment: 70 pages, final version published in JHE
An E9 multiplet of BPS states
We construct an infinite E9 multiplet of BPS states for 11D supergravity. For
each positive real root of E9 we obtain a BPS solution of 11D supergravity, or
of its exotic counterparts, depending on two non-compact transverse space
variables. All these solutions are related by U-dualities realised via E9 Weyl
transformations in the regular embedding of E9 in E10, E10 in E11. In this way
we recover the basic BPS solutions, namely the KK-wave, the M2 brane, the M5
brane and the KK6-monopole, as well as other solutions admitting eight
longitudinal space dimensions. A novel technique of combining Weyl reflexions
with compensating transformations allows the construction of many new BPS
solutions, each of which can be mapped to a solution of a dual effective action
of gravity coupled to a certain higher rank tensor field. For real roots of E10
which are not roots of E9, we obtain additional BPS solutions transcending 11D
supergravity (as exemplified by the lowest level solution corresponding to the
M9 brane). The relation between the dual formulation and the one in terms of
the original 11D supergravity fields has significance beyond the realm of BPS
solutions. We establish the link with the Geroch group of general relativity,
and explain how the E9 duality transformations generalize the standard Hodge
dualities to an infinite set of `non-closing dualities'.Comment: 76 pages, 6 figure
Hidden Symmetries and Dirac Fermions
In this paper, two things are done. First, we analyze the compatibility of
Dirac fermions with the hidden duality symmetries which appear in the toroidal
compactification of gravitational theories down to three spacetime dimensions.
We show that the Pauli couplings to the p-forms can be adjusted, for all simple
(split) groups, so that the fermions transform in a representation of the
maximal compact subgroup of the duality group G in three dimensions. Second, we
investigate how the Dirac fermions fit in the conjectured hidden overextended
symmetry G++. We show compatibility with this symmetry up to the same level as
in the pure bosonic case. We also investigate the BKL behaviour of the
Einstein-Dirac-p-form systems and provide a group theoretical interpretation of
the Belinskii-Khalatnikov result that the Dirac field removes chaos.Comment: 30 page
- …