4,117 research outputs found

    Predictions for the frequency and orbital radii of massive extrasolar planets

    Get PDF
    We investigate the migration of massive extrasolar planets due to gravitational interaction with a viscous protoplanetary disc. We show that a model in which planets form at 5 AU at a constant rate, before migrating, leads to a predicted distribution of planets that is a steeply rising function of log (a), where a is the orbital radius. Between 1 AU and 3 AU, the expected number of planets per logarithmic interval in orbital radius roughly doubles. We demonstrate that, once selection effects are accounted for, this is consistent with current data, and then extrapolate the observed planet fraction to masses and radii that are inaccessible to current observations. In total, about 15 percent of stars targeted by existing radial velocity searches are predicted to possess planets with masses 0.3 M_Jupiter < M_p sin (i) < 10 M_Jupiter, and radii 0.1 AU < a < 5 AU. A third of these planets (around 5 percent of the target stars) lie at the radii most amenable to detection via microlensing. A further 5-10 percent of stars could have planets at radii of 5 AU < a < 8 AU that have migrated outwards. We discuss the probability of forming a system (akin to the Solar System) in which significant radial migration of the most massive planet does not occur. About 10-15 percent of systems with a surviving massive planet are estimated to fall into this class. Finally, we note that a smaller fraction of low mass planets than high mass planets is expected to survive without being consumed by the star. The initial mass function for planets is thus predicted to rise more steeply towards small masses than the observed mass function.Comment: MNRAS, in pres

    Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium

    Get PDF
    Background&lt;p&gt;&lt;/p&gt; Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk.&lt;p&gt;&lt;/p&gt; Methods and Results&lt;p&gt;&lt;/p&gt; We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≥ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≤ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026).&lt;p&gt;&lt;/p&gt; Conclusion&lt;p&gt;&lt;/p&gt; Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings

    Gadolinium Concentration Analysis in Brain Phantom by X-ray Fluorescence

    Get PDF
    We have measured the X-ray fluorescence from gadolinium as a function of concentration and position in tumors of different sizes and shapes in a head phantom. The gadolinium fluorescence was excited with a 36 GBq Am-241 source. The fluorescence signal was detected with a CdTe detector and a multi-channel analyzer. The fluorescence peak was clearly separated from the scattered X-rays. Concentrations of 5.62–78.63 mg/ml of Gd ion were used in 1, 2, and 3 cm diameter spherical tumors and a 2 9 4 cm oblate spheroid tumor. The data show trends approaching saturation for the highest concentrations, probably due to reabsorption in the tumor. A comparison of X-ray photographic imaging and densitometer measurements to determine concentration is also presented

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium

    Get PDF
    Background: Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk. Methods and Results: We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≥ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≤ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026). Conclusion: Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or
    corecore