176 research outputs found

    Encheliophis chardewalli: A new species of carapidae (Ophidiiformes) from French Polynesia, with a redescription of Encheliophis vermicularis

    Full text link
    A specimen of Encheliophis was found in the coelomic cavity of a sea cucumber in Moorea (French Polynesia). The skeletal morphology (skull, girdles, vertebrae) reveal it to be a new species, described herein as Encheliophis chardewalli. It is separable from all described species of Encheliophis (except Encheliophis vermicularis) by the lack of pectoral fins and from E. vermicularis by the larger and fewer teeth on the lower jaw (14 vs more than 20 in E. vermicularis) and by seven branchiostegal rays (vs six in E. vermicularis).Peer reviewe

    Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium

    Full text link
    We present a theoretical study of transient absorption and reshaping of extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately strong infrared (IR) laser field. We formulate the atomic response using both the frequency-dependent absorption cross section and a time-frequency approach based on the time-dependent dipole induced by the light fields. The latter approach can be used in cases when an ultrafast dressing pulse induces transient effects, and/or when the atom exchanges energy with multiple frequency components of the XUV field. We first characterize the dressed atom response by calculating the frequency-dependent absorption cross section for XUV energies between 20 and 24 eV for several dressing wavelengths between 400 and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p transition that can potentially lead to transparency for absorption of XUV light tuned to this transition. We study the effect of this XUV transparency in a macroscopic helium gas by incorporating the time-frequency approach into a solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise

    Non-Hermitian Rayleigh-Schroedinger Perturbation Theory

    Full text link
    We devise a non-Hermitian Rayleigh-Schroedinger perturbation theory for the single- and the multireference case to tackle both the many-body problem and the decay problem encountered, for example, in the study of electronic resonances in molecules. A complex absorbing potential (CAP) is employed to facilitate a treatment of resonance states that is similar to the well-established bound-state techniques. For the perturbative approach, the full CAP-Schroedinger Hamiltonian, in suitable representation, is partitioned according to the Epstein-Nesbet scheme. The equations we derive in the framework of the single-reference perturbation theory turn out to be identical to those obtained by a time-dependent treatment in Wigner-Weisskopf theory. The multireference perturbation theory is studied for a model problem and is shown to be an efficient and accurate method. Algorithmic aspects of the integration of the perturbation theories into existing ab initio programs are discussed, and the simplicity of their implementation is elucidated.Comment: 10 pages, 1 figure, RevTeX4, submitted to Physical Review

    Theory of x-ray absorption by laser-dressed atoms

    Get PDF
    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser (800nm, 10^13 W/cm^2). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-particle problem in conjunction with a nonrelativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction strength between x rays and atoms. We apply the theory to study the photoabsorption cross section of krypton atoms near the K edge. A pronounced modification of the cross section is found in the presence of the optical laser.Comment: 13 pages, 3 figures, 1 table, RevTeX4, corrected typoe

    Theory of x-ray absorption by laser-aligned symmetric-top molecules

    Full text link
    We devise a theory of x-ray absorption by symmetric-top molecules which are aligned by an intense optical laser. Initially, the density matrix of the system is composed of the electronic ground state of the molecules and a thermal ensemble of rigid-rotor eigenstates. We formulate equations of motion of the two-color (laser plus x rays) rotational-electronic problem. The interaction with the laser is assumed to be nonresonant; it is described by an electric dipole polarizability tensor. X-ray absorption is approximated as a one-photon process. It is shown that the equations can be separated such that the interaction with the laser can be treated independently of the x rays. The laser-only density matrix is propagated numerically. After each time step, the x-ray absorption is calculated. We apply our theory to study adiabatic alignment of bromine molecules (Br2). The required dynamic polarizabilities are determined using the ab initio linear response methods coupled-cluster singles (CCS), second-order approximate coupled-cluster singles and doubles (CC2), and coupled-cluster singles and doubles (CCSD). For the description of x-ray absorption on the sigma_g 1s --> sigma_u 4p resonance, a parameter-free two-level model is used for the electronic structure of the molecules. Our theory opens up novel perspectives for the quantum control of x-ray radiation.Comment: 14 pages, 4 figures, 1 table, RevTeX4, revise

    Ab initio Green's function formalism for band structures

    Full text link
    Using the Green's function formalism, an ab initio theory for band structures of crystals is derived starting from the Hartree-Fock approximation. It is based on the algebraic diagrammatic construction scheme for the self-energy which is formulated for crystal orbitals (CO-ADC). In this approach, the poles of the Green's function are determined by solving a suitable Hermitian eigenvalue problem. The method is not only applicable to the outer valence and conduction bands, it is also stable for inner valence bands where strong electron correlations are effective. The key to the proposed scheme is to evaluate the self-energy in terms of Wannier orbitals before transforming it to a crystal momentum representation. Exploiting the fact that electron correlations are mainly local, one can truncate the lattice summations by an appropriate configuration selection scheme. This yields a flat configuration space; i.e., its size scales only linearly with the number of atoms per unit cell for large systems and, under certain conditions, the computational effort to determine band structures also scales linearly. As a first application of the new formalism, a lithium fluoride crystal has been chosen. A minimal basis set description is studied, and a satisfactory agreement with previous theoretical and experimental results for the fundamental band gap and the width of the F 2p valence band complex is obtained.Comment: 20 pages, 3 figures, 1 table, RevTeX4, new section on lithium fluorid

    The effect of total arterial grafting on medium-term outcomes following coronary artery bypass grafting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While it is believed that total arterial grafting (TAG) for coronary artery bypass grafting (CABG) confers improved long-term outcomes when compared to conventional grafting with left internal mammary artery and saphenous vein grafts (LIMA+SVG), to date, this has not become the standard of care. In this study, we assessed the impact of TAG on medium-term outcomes after CABG.</p> <p>Methods</p> <p>Peri-operative data was prospectively collected on consecutive first-time, isolated CABG patients between 1995 and 2005. Patients were divided into two groups based on grafting strategy: TAG (all arterial grafts no saphenous veins) or LIMA+SVG. Patients who had an emergent status or underwent fewer than two distal bypasses were excluded. Medium term univariate and risk-adjusted comparisons between TAG and LIMA+SVG cases were performed.</p> <p>Results</p> <p>A total of 4696 CABG patients were included with 1019 patients undergoing TAG (22%). Unadjusted in-hospital mortality was 1.5% for TAG patients compared to 2.0% for LIMA+SVG (p = 0.31). The mean follow-up was 4.8 ± 2.0 years for TAG patients compared to 6.1 ± 3.0 years for LIMA+SVG patients (p < 0.0001). At follow-up total mortality (8% vs 19%; p < 0.0001), and the incidence of readmission to hospital for cardiac reasons (29% vs 38%; p < 0.0001) were significantly lower in TAG compared to LIMA+SVG patients. However, after adjusting for clinical covariates, TAG did not emerge as a significant independent predictor of long-term mortality (HR 0.92; CI 0.71–1.18), readmission to hospital (HR 1.02; CI 0.89–1.18) or the composite outcome of mortality and readmission (HR 1.00; CI 0.88–1.15). Risk adjusted survival was better than 88% in both TAG and LIMA-SVG patients at 5 years follow-up.</p> <p>Conclusion</p> <p>Patients undergoing TAG appear to experience lower rates of medium-term all-cause mortality and readmission to hospital for any cardiac cause when compared to patients undergoing LIMA+SVG. However, after adjusting for clinical variables, this difference no longer persists suggesting that at median follow-up there are no mortality or morbidity benefit based on the choice of conduit.</p
    • …
    corecore